Sr. #	MCQ	Answer
1	Suppose a gas flow with no variation in its density then the flow is known	С
	as:	
	A. Compressible fluid	
	B. Unsteady flow	
	C. Incompressible fluid	
	D. Steady flow	
2		D
2	If we use mercury in a differential manometer what is its value?	В
	A. I D. 12.55	
	B. 15.55	
	D_{26}	
	D. 2.0	
3	The is measure of fluid's resistance to shear or angular	Л
5	deformation	D
	A Kinematic Viscosity	
	B Dynamic Viscosity	
	C Absolute Viscosity	
	D Both B & C	
4	The value of the Bulk Modulus of elasticity for an in compressible fluid	В
	is?	_
	A. Zero	
	B. Infinity	
	C. Unity	
	D. Very low	
5	The venture meter is a device used for measuring	В
	A. Head loss	
	B. Discharge	
	C. Reynolds Number	
	D. Roughness	
6	The Sheet of water flowing over the weir crest is known as:	D
	A. Nappe	
	B. Vein	
	C. Head	
	D. Both A & B	
7	When a body floating in a liquid is displaced slightly, it oscillates about	D
	A. Center of gravity	
	B. Center of buoyancy	
	C. Center of pressure	

Questions Bank for Water Resources Engineering

	D. Metacenter	
8	The buoyant force on anybody is equal to of fluid displaced.	С
	A. Mass	
	B. Volume	
	C. Weight & Volume	
	D. Weight	
9	As diameter of the pipe increases, the head loss will	В
	A. Increases	
	B. Decreases	
	C. Remains same	
10	D. None of these	D
10	is used to demonstrate water surge.	В
	A. Office Apparatus B Water Hammer Apparatus	
	C. Hydraulic Bench	
	D Cut-throat flume	
11	The sum of pressure head and the elevation head is called.	D
	A. Energy Head	
	B. Hydraulic Head	
	C. Piezometric Head	
	D. All of these	
12	Kinematic viscosity is usually measured in cm2/sec which is also called.	С
	A. Poise	
	B. Joule	
	C. Stoke	
	D. Pascal-Second	
13	Differential manometer gives theamong two pressures.	D
	A. Variation	
	B. Difference	
	C. Absolute	
	D. Both A & B	
14	When water hits the anti-pump device the hydraulic energy is converted	А
	to	
	A. Electrical Energy	
	B. Mechanical Energy	
	C. Hydraulic Energy	
	D. None of the Above	
15	The combination of elevation head and velocity head is known as	D
	A. Hydraulic grade line	

	B. Energy grade line	
	C. Both A & B	
	D. Nolle of the Above	
16	The figure contains irregularity and inertia forces is known as	С
	A. Roughness factor chart	
	B. Pie-chart	
	C. Moody Diagram	
	D. None of the above	
17	The energy grade line is alwaysthan the hydraulic grade line.	А
	A. Above	
	B. Below	
	C. At same level	
	D. None of these	
18	Thetype of turbine works on the principal of centrifugal	В
	force.	
	A. Inward flow	
	B. Outward flow	
	C. Axial flow	
	D. Kadiai now	
19	If buoyancy force is equal to the weight of body, then the body will	В
	A. Sink	
	B. Float	
	C. Both A & B	
	D. None of these	
20	The total energy head in HGL is	А
	A. $Z + \frac{p}{v} + \frac{v^2}{2z}$	
	$\gamma 2g$ $p - \pi^2 + p + v^2$	
	B. $Z^2 + \frac{1}{\gamma} + \frac{1}{2g}$	
	C. $Z + 2\frac{p}{v} + \frac{v^2}{2q}$	
	D. $Z + \frac{v^2}{2a}$	
21	The mechanics of liquids and gases which is based on the same	С
	fundamental principles that are employed in the mechanics of solids is	
	called	
	A. A. Fluid Flow System	
	B. B. Solid Mechanics	
	C. C. Liquid and gas Mechanics	
	D. D. Plasma mechanics	-
22	The combining of classical hydrodynamics with the study of real fluid is	В

	related to the science, called	
	A. Hydraulics Engineering	
	B. Hydrodynamics Engineering	
	C. Water Engineering	
	D. Classical Hydraulics	
23	having temperature and pressure very near to the liquid	D
	phase.	
	A. Solid	
	B. Gases	
	C. Liquids	
	D. Vapors	
24	Glycerin at a specific gravity of 1.44 has density in g/cm ³	С
	and specific weight in kN/m ³ .	
	A. 1440 and 14126.4	
	B. 1.44 and 14.1264	
	C. 1.44 and 14126.4	
	D. 14400 and 14.1264	
25	The R^2 with the increase in the distance from earth's	В
	center	
	A. Increases	
	B. Reduces	
	C. No change	
	D. None of the above	
26	The change in pressure during compressibility of a liquid is	А
	to its bulk modulus of elasticity.	
	A. In a straight line	
	B. Inversely	
	C No change	
	e. No change	
	D. None of the above	
27	D. None of the above The is measure of fluid's resistance to shear or angular	D
27	D. None of the above The is measure of fluid's resistance to shear or angular deformation.	D
27	D. None of the above The is measure of fluid's resistance to shear or angular deformation. A. Kinematic viscosity	D
27	D. None of the above The is measure of fluid's resistance to shear or angular deformation. A. Kinematic viscosity B. Dynamic viscosity	D
27	D. None of the above The is measure of fluid's resistance to shear or angular deformation. A. Kinematic viscosity B. Dynamic viscosity C. Absolute viscosity	D
27	D. None of the above The is measure of fluid's resistance to shear or angular deformation. A. Kinematic viscosity B. Dynamic viscosity C. Absolute viscosity D. Both B and C	D
27	D. None of the above The is measure of fluid's resistance to shear or angular deformation. A. Kinematic viscosity B. Dynamic viscosity C. Absolute viscosity D. Both B and C Specific weight water at 20°C (1013 m.bar, abs) with g = 9.8m/s2	D
27 28	D. None of the above The	D
27	D. None of the above The is measure of fluid's resistance to shear or angular deformation. A. Kinematic viscosity B. Dynamic viscosity C. Absolute viscosity D. Both B and C Specific weight water at 20°C (1013 m.bar, abs) with g = 9.8m/s2 is A. 63.01 lb/ft3	D
27	D. None of the above The is measure of fluid's resistance to shear or angular deformation. A. Kinematic viscosity B. Dynamic viscosity C. Absolute viscosity D. Both B and C Specific weight water at 20°C (1013 m.bar, abs) with g = 9.8m/s2 is A. 63.01 lb/ft3 B. 9.8kN/m3	D
27	D. None of the above The is measure of fluid's resistance to shear or angular deformation. A. Kinematic viscosity B. Dynamic viscosity C. Absolute viscosity D. Both B and C Specific weight water at 20°C (1013 m.bar, abs) with g = 9.8m/s2 is A. 63.01 lb/ft3 B. 9.8kN/m3 C. 8.91 kN/m3	D
27	D. None of the above The is measure of fluid's resistance to shear or angular deformation. A. Kinematic viscosity B. Dynamic viscosity C. Absolute viscosity D. Both B and C Specific weight water at 20°C (1013 m.bar, abs) with g = 9.8m/s2 is A. 63.01 lb/ft3 B. 9.8kN/m3 C. 8.91 kN/m3 D. None of the above	D
27 28 29	D. None of the above The is measure of fluid's resistance to shear or angular deformation. A. Kinematic viscosity B. Dynamic viscosity C. Absolute viscosity D. Both B and C Specific weight water at 20°C (1013 m.bar, abs) with g = 9.8m/s2 is A. 63.01 lb/ft3 B. 9.8kN/m3 C. 8.91 kN/m3 D. None of the above	D A B
27 28 29	D. None of the above The is measure of fluid's resistance to shear or angular deformation. A. Kinematic viscosity B. Dynamic viscosity C. Absolute viscosity D. Both B and C Specific weight water at 20°C (1013 m.bar, abs) with g = 9.8m/s2 is A. 63.01 lb/ft3 B. 9.8kN/m3 C. 8.91 kN/m3 D. None of the above For air the value of gas constant R is A. 8312 287 N.m/(kg.K)	D A B
27 28 29	D. None of the above The is measure of fluid's resistance to shear or angular deformation. A. Kinematic viscosity B. Dynamic viscosity C. Absolute viscosity D. Both B and C Specific weight water at 20°C (1013 m.bar, abs) with g = 9.8m/s2 is A. 63.01 lb/ft3 B. 9.8kN/m3 C. 8.91 kN/m3 D. None of the above For air the value of gas constant R is A. 8312 287 N.m/(kg.K) B. 287 N.m/(kg.K)	D A B
27 28 29	D. None of the above The is measure of fluid's resistance to shear or angular deformation. A. Kinematic viscosity B. Dynamic viscosity C. Absolute viscosity D. Both B and C Specific weight water at 20°C (1013 m.bar, abs) with g = 9.8m/s2 is A. 63.01 lb/ft3 B. 9.8kN/m3 C. 8.91 kN/m3 D. None of the above For air the value of gas constant R is A. 8312 287 N.m/(kg.K) B. 287 N.m/(kg.K) C. 8132 287 N.m/(kg.K)	D A B

30	Two clean glass plates separated by 1.3mm the water will rise for	В
	for a surface tension value of 0.0745 N/m.	
	A. 11.61m	
	B. 23.23m	
	C. 0m	
	D. 11.61mm	
31	The unit of viscosity is poise which is equal to Ns/m ² .	С
	A. 1	
	B. 0.01	
	C. 0.10	
	D. 0.001	
32	Kinematics viscosity is usually measured in m2/s which is equal to	А
	stoke.	
	A. 0.0001st	
	B. 1	
	C. 0.001st	
	D. 1000st	
33	A fluid for which the constant of proportionality (i.e. the viscosity) does	А
	not change with rate of deformation is said to be a	
	A. Non Newtonian fluid	
	B. Newtonian Fluid	
	C. Viscous Fluid	
	D. None of the above	
34	Bernoulli's equation cannot be applied when the flow is	D
	A. rotational	
	B. turbulent	
	C. steady	
	D. Both A and B	
35	According to Archimede's principle, if a body is immersed partially or	D
	fully in a fluid then the buoyancy force is the weight of fluid	
	displaced by the body.	
	A. equal to	
	B. less than	
	C. more than	
	D. unpredictable	
36	What is the correct formula for absolute pressure?	D
	A. $Pabs = Patm - Pgauge$	
	B. Pabs = Pvacuum – Patm	
	C. Pabs = Pvacuum + Patm	
27	D. Pabs = Patm+ Pgauge	
37	If the mass of an identical fluid volume along with its local average	D
	velocity are alike at all points in a flow field then it is known as	
	A. Uniform	
	B. Varied	

	C. Steady	
	D. Spatially Constant	
38	Suppose a gas flow with no variation in its density then the flow is known	С
	as	
	A. Compressible	
	B. Unsteady	
	C. Incompressible	
	D. Steady	
39	In a flowing water if the front of eddies is towards the front more than the	В
	backside then the flow is known as	
	A. Gravity flow	
	B. Supercritical flow	
	C. Steady flow	
	D. Subcritical flow	
40	The temperature above which a fluid changes its phase permanently is	D
	known as	
	A. Absolute temperature	
	B. Critical pressure	
	C. Both A and B	
	D. None of the above	
41	Steady flow is also	D
	A. Inviscid	
	B. Stream line	
	C. IR-Rotational	
	D. Both B and C	
42	always develop whenever there is a motion relative to a	D
	body.	
	A. Shearing force	
	B. Tangential force	
	C. Internal force	
	D. Both B and C	
43	The flow around a body is one example of	D
	A. Streamline flow	
	B. Streamline and equipotential lines flow	
	C. Flow net	
	D. Both B and C	
44	Differential manometer gives theamong two pressures	С
	A. Variation	
	B. Difference	
	C. Both A and B	
	D. None of the above	

45	component is responsible of flow when a fluid flows due to	D
	gravity.	
	A. Component tangent to the plane	
	B. Component along the plane	
	C. Sign component	
	D. Both B and C	
46	The flows from the gates of a barrage changes from	D
	A. Supercritical to critical and then subcritical	
	B. Subcritical to critical	
	C. After hydraulic jump changes to Subcritical	
	D. All of the options	
47	When water hits the anti-pump device the hydraulic energy is converted	А
	to	
	A. Electric energy	
	B. B. Mechanical energy	
	C. Hydraulic energy	
	D. None of the above	
48	The combination of elevation head and velocity head is known as	D
	A. Hydraulic grade line	
	B. Energy grade line	
	C. Both A and B	
	D. None of the above	
49	For a fully-developed pipe flow, how does the pressure vary with the	А
	length of the pipe?	
	A. Linearly	
	B. Parabolic	
	C. Exponential	
	D. Constant	
50	The critical value of RN for uniform pipes with unusual irregularities is	D
	equal to	
	A. 2000	
	B. 0002m2/s	
	C. 0.08m/s	
	D. None of the above	
51	Which of the following is a dimensionless equation?	D
	A. Reynold's equation	
	B. Euler's equation	
	C. Weber's equation	
	D. All of the above	
52	Which of the following equations is not dimensionally homogeneous?	D
	Consider standard symbols for quantities.	
	A. (Force) $F = m x a$	
	B. (Head Loss due to friction) $hf = (f L V2) / (2 g d)$	
	C. (Torque) $T = F x$ Distance	

	D. None of the above	
53	What is the effect of change in Reynold's number on friction factor in	А
	turbulent flow?	
	A. As the Reynold's number increases the friction factor increases in	
	turbulent flow	
	B. As the Reynold's number increases the friction factor decreases in	
	turbulent flow	
	C. change in Reynold's number does not affect the friction factor in	
	turbulent flow	
	D. unpredictable	
54	The friction factor in fluid flowing through pipe depends upon	C
	A. Reynold's number	
	B. relative roughness of pipe surface	
	C. both a. and b.	
	D. none of the above	_
55	Friction factor for laminar flow is given by	В
	A. (Re/64)	
	B. $(64 / \text{Re})$	
	C. $(\text{Re} / 16)$	
	$\frac{D. (16 / Re)}{(1 + 1)^{1}}$	5
56	Shear stress in a turbulent flow is given by the formula: $\tau = \eta (du / dy)$	D
	Where η (eta) is,	
	A. eddy viscosity	
	B. apparent viscosity	
	C. VIFtual VISCOSITY $D_{1} = 11 + 6 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2$	
57	D. all of the above	C
57	diverging section of venturimeter is called as	C
	diverging section of venturimeter, is called as	
	A. diffuser B. connector	
	C throat	
	D manometer tube	
58	Which of the following devices does not use Remoulli's equation as its	D
50	working principle?	
	A. Venturimeter	
	B. Orifice-meter	
	C. Pitot tube	
	D. None of the above	
59	Blood circulation through arteries is	А
	A. laminar flow	
	B. turbulent flow	
	C. rotational flow	
	D. None of the options	
60	Newtonian fluid is defined as the fluid which	С
	A. Obeys Hook's law	
	B. Is compressible	

	C. Obeys Newton's law of viscosity	
	D. Is incompressible	
61	If the Reynolds number is less than 2000, the flow in a pipe is	В
	A. Turbulent	
	B. Laminar	
	C. Transition	
	D. None of the above	
62	A flow is called super-sonic if the	С
	A. velocity of flow is very high	
	B. discharge is difficult to measure	
	C. Mach number is between 1 and 5	
	D. Mach number is less than 1	
63	The unit of pressure one bar is	С
	A. 1 Pascal	
	B. 1 kilo Pascal	
	C. 100 kPascal	
	D. 1000 kPascal	
64	The dynamic viscosity of a liquid is $1.2 \times 10-4$ Ns/m2, whereas, the	В
	density is 600 kg/m3. The kinematic viscosity in m2/s is	
	A. $72 \times 10-3$	
	B. $20 \times 10-8$	
	C. 7.2×103	
	D. 70×106	
		~
65	The location of the centre of pressure over a surface immersed in a liquid	C
65	The location of the centre of pressure over a surface immersed in a liquid is	C
65	The location of the centre of pressure over a surface immersed in a liquid is A. always above the centroid	C
65	 The location of the centre of pressure over a surface immersed in a liquid is A. always above the centroid B. will be at the centroid 	C
65	 The location of the centre of pressure over a surface immersed in a liquid is A. always above the centroid B. will be at the centroid C. will be below the centroid 	C
65	 The location of the centre of pressure over a surface immersed in a liquid is A. always above the centroid B. will be at the centroid C. will be below the centroid D. for higher densities it will be above the centroid and for lower 	C
65	 The location of the centre of pressure over a surface immersed in a liquid is A. always above the centroid B. will be at the centroid C. will be below the centroid D. for higher densities it will be above the centroid and for lower densities it will be below the centroid 	C
65	 The location of the centre of pressure over a surface immersed in a liquid is A. always above the centroid B. will be at the centroid C. will be below the centroid D. for higher densities it will be above the centroid and for lower densities it will be below the centroid The continuity equation is the result of application of the following law to 	C D
65 66	 The location of the centre of pressure over a surface immersed in a liquid is A. always above the centroid B. will be at the centroid C. will be below the centroid D. for higher densities it will be above the centroid and for lower densities it will be below the centroid The continuity equation is the result of application of the following law to the flow field 	C D
65 66	 The location of the centre of pressure over a surface immersed in a liquid is A. always above the centroid B. will be at the centroid C. will be below the centroid D. for higher densities it will be above the centroid and for lower densities it will be below the centroid The continuity equation is the result of application of the following law to the flow field A. First law of thermodynamics 	D
65 66	 The location of the centre of pressure over a surface immersed in a liquid is A. always above the centroid B. will be at the centroid C. will be below the centroid D. for higher densities it will be above the centroid and for lower densities it will be below the centroid The continuity equation is the result of application of the following law to the flow field A. First law of thermodynamics B. Conservation of energy 	D
65 66	 The location of the centre of pressure over a surface immersed in a liquid is A. always above the centroid B. will be at the centroid C. will be below the centroid D. for higher densities it will be above the centroid and for lower densities it will be below the centroid The continuity equation is the result of application of the following law to the flow field A. First law of thermodynamics B. Conservation of energy C. Newtons second law of motion 	D
65	 The location of the centre of pressure over a surface immersed in a liquid is A. always above the centroid B. will be at the centroid C. will be below the centroid D. for higher densities it will be above the centroid and for lower densities it will be below the centroid The continuity equation is the result of application of the following law to the flow field A. First law of thermodynamics B. Conservation of energy C. Newtons second law of motion D. Conservation of mass 	D
65 66 67	 The location of the centre of pressure over a surface immersed in a liquid is A. always above the centroid B. will be at the centroid C. will be below the centroid D. for higher densities it will be above the centroid and for lower densities it will be below the centroid The continuity equation is the result of application of the following law to the flow field A. First law of thermodynamics B. Conservation of energy C. Newtons second law of motion D. Conservation of mass 	C D B
65 66 67	 The location of the centre of pressure over a surface immersed in a liquid is A. always above the centroid B. will be at the centroid C. will be below the centroid D. for higher densities it will be above the centroid and for lower densities it will be below the centroid The continuity equation is the result of application of the following law to the flow field A. First law of thermodynamics B. Conservation of energy C. Newtons second law of motion D. Conservation of mass Reynolds number signifies the ratio of A. gravity forces top viscous forces 	C D B
65 66 67	 The location of the centre of pressure over a surface immersed in a liquid is A. always above the centroid B. will be at the centroid C. will be below the centroid D. for higher densities it will be above the centroid and for lower densities it will be below the centroid The continuity equation is the result of application of the following law to the flow field A. First law of thermodynamics B. Conservation of energy C. Newtons second law of motion D. Conservation of mass Reynolds number signifies the ratio of A. gravity forces top viscous forces B. inertial forces to viscous forces 	C D B
65 66 67	 The location of the centre of pressure over a surface immersed in a liquid is A. always above the centroid B. will be at the centroid C. will be below the centroid D. for higher densities it will be above the centroid and for lower densities it will be below the centroid The continuity equation is the result of application of the following law to the flow field A. First law of thermodynamics B. Conservation of energy C. Newtons second law of motion D. Conservation of mass Reynolds number signifies the ratio of A. gravity forces top viscous forces B. inertial forces to gravity forces 	C D B
65 66 67	 The location of the centre of pressure over a surface immersed in a liquid is A. always above the centroid B. will be at the centroid C. will be below the centroid D. for higher densities it will be above the centroid and for lower densities it will be below the centroid The continuity equation is the result of application of the following law to the flow field A. First law of thermodynamics B. Conservation of energy C. Newtons second law of motion D. Conservation of mass Reynolds number signifies the ratio of A. gravity forces to viscous forces B. inertial forces to gravity forces D. buoyant forces to inertia forces 	C D B
65 66 67 68	 The location of the centre of pressure over a surface immersed in a liquid is A. always above the centroid B. will be at the centroid C. will be below the centroid D. for higher densities it will be above the centroid and for lower densities it will be below the centroid The continuity equation is the result of application of the following law to the flow field A. First law of thermodynamics B. Conservation of energy C. Newtons second law of motion D. Conservation of mass Reynolds number signifies the ratio of A. gravity forces top viscous forces B. inertial forces to gravity forces D. buoyant forces to inertia forces 	C D B C
65 66 67 68	 The location of the centre of pressure over a surface immersed in a liquid is A. always above the centroid B. will be at the centroid C. will be below the centroid D. for higher densities it will be above the centroid and for lower densities it will be below the centroid The continuity equation is the result of application of the following law to the flow field A. First law of thermodynamics B. Conservation of energy C. Newtons second law of motion D. Conservation of mass Reynolds number signifies the ratio of A. gravity forces to piscous forces B. inertial forces to gravity forces D. buoyant forces to inertia forces In pipe flow the critical Reynolds number is about A. 640 	C D B C
65 66 67 68	 The location of the centre of pressure over a surface immersed in a liquid is A. always above the centroid B. will be at the centroid C. will be below the centroid D. for higher densities it will be above the centroid and for lower densities it will be below the centroid The continuity equation is the result of application of the following law to the flow field A. First law of thermodynamics B. Conservation of energy C. Newtons second law of motion D. Conservation of mass Reynolds number signifies the ratio of A. gravity forces to piscous forces B. inertial forces to gravity forces D. buoyant forces to inertia forces In pipe flow the critical Reynolds number is about A. 640 B. 5 × 105 	C D B C
65 66 67 68	 The location of the centre of pressure over a surface immersed in a liquid is A. always above the centroid B. will be at the centroid C. will be below the centroid D. for higher densities it will be above the centroid and for lower densities it will be below the centroid The continuity equation is the result of application of the following law to the flow field A. First law of thermodynamics B. Conservation of energy C. Newtons second law of motion D. Conservation of mass Reynolds number signifies the ratio of A. gravity forces to viscous forces B. inertial forces to gravity forces D. buoyant forces to inertia forces In pipe flow the critical Reynolds number is about A. 640 B. 5 × 105 C. 2000 	C D B C

69	Anemometer is used to measure	А
	A. Velocity	
	B. Pressure	
	C. Viscosity	
	D. Density	
70	Property of fluid that describes its internal resistance is known as:	А
	A. Viscosity	
	B. Friction	
	C. Resistance	
	D. Internal energy	
71	Which fluid does not experience shearing stress during flow?	D
	A. Pseudoplastic	
	B Dilatant	
	C. Newtonian	
	D Inviscid	
72	Viscous forces are not present in	В
, 2	A rotational flow	D
	B irrotational flow	
	C laminar flow	
	\mathbf{D} none of the above	
73	The fluid will rise in capillary when the capillary is placed in fluid if	R
15	A the adhesion force between molecules of fluid and tube is less than	D
	A. the adhesion force between molecules of fluid and tube is less than the cohesion between liquid molecules	
	B the adhesion force between molecules of fluid and tube is more	
	b. the adhesion force between molecules of fluid and tube is more than the schesion between liquid molecules	
	C the adhesion force between inquit indicates	
	C. the adhesion force between molecules of fluid and tube is equal to	
	D. None of these	
74	D. None of these	D
/4	A fluid which has no viscosity	D
	A. A fluid which has no viscosity D. A fluid which is in some prescible	
	B. A fluid which is incompressible	
	C. A fluid which has no surface tension	
75	D. All of the above	•
/5	Newton's law of viscosity states that	А
	A. the shear stress applied to the fluid is directly proportional to the such sites and is $d(h_{0})$	
	velocity gradient (du/dy)	
	B. the shear stress applied to the fluid is inversely proportional to the	
	velocity gradient (du/dy)	
	C. the shear stress applied to the fluid is directly proportional to the	
	specific weight of the fluid	
	D. the shear stress applied to the fluid is inversely proportional to the	
	specific weight of the fluid	
/6	what are the dimensions of force?	A
	A. $[M L T - 2]$	
	$\begin{bmatrix} B. [M L T - 1] \end{bmatrix}$	
	[C. $[M L 2 T - 2]$	

	D. [M L 2 T 2]	
77	Minor losses do not make any serious effect in	В
	A. short pipes	
	B. long pipes	
	C. both the short as well as long pipes	
	D. cannot say	
78	Minor losses occur due to	D
	A. sudden enlargement in pipe	
	B. sudden contraction in pipe	
	C. bends in pipe	
	D. all of the above	
79	The head loss through fluid flowing pipe due to friction is	В
	A. the minor loss	
	B. the major loss	
	C. both a. and b.	
	D. none of the above	
80	Coefficient of friction for laminar flow is given as	D
	Where,	
	Re = Reynold's number	
	A. (Re / 32)	
	B. (32 / Re)	
	C. (Re / 16)	
	D. (16 / Re)	
81	How should be the viscosity of the flowing fluid for laminar flow?	В
	A. viscosity of the fluid should be as low as possible, for laminar	
	flow	
	B. viscosity of the fluid should be as high as possible, for laminar	
	flow	
	C. change in viscosity of the flowing fluid does not affect its flow	
	D. unpredictable	
82	The flow of fluid will be laminar when,	C
	A. Reynold's number is less than 2000	
	B. the density of the fluid is low	
	C. both a. and b.	
	D. none of the above	
83	In a steady, ideal flow of an incompressible fluid, total energy at any	D
	point of the fluid is always constant. This theorem is known as	
	A. Euler's theorem	
	B. Navier-stockes theorem	
	C. Reynold's theorem	
0.1	D. Bernoulli's theorem	
84	The study of force which produces motion in a fluid is called as	В
	A. fluid statics	
	B. fluid dynamics	
	C. fluid kinematics	
	D. none of the above	

85	The imaginary line drawn in the fluid in such a way that the tangent to	D
	any point gives the direction of motion at the point, is called as	
	A. path line	
	B. streak line	
	C. filament line	
	D. stream line	
86	The actual path followed by a fluid particle as it moves during a period of	А
	time, is called as	
	A. path line	
	B. streak line	
	C. filament line	
	D. stream line	
87	Which property of the fluid offers resistance to deformation under the	В
	action of shear force?	
	A. density	
	B. viscosity	
	C. permeability	
	D. specific gravity	
88	The specific weight of the fluid depends upon	С
	A. gravitational acceleration	
	B. mass density of the fluid	
	C. both A and B	
	D. none of the above	
89	Inter molecular cohesive force in the fluids is	А
	A. less than that of the solids	
	B. more than that of the solids	
	C. equal to that of the solids	
	D. unpredictable	
90	Which branch of fluid mechanics deals with translation, rotation and	В
	deformation of the fluid element without considering the force and energy	
	causing such motion is called as	
	A. fluid dynamics	
	B. fluid kinematics	
	C. fluid kinetics	
	D. hydraulics	
91	Shear stress in static fluid is	В
	A. always zero	
	B. always maximum	
	C. between zero to maximum	
	D. unpredictable	_
92	A same specification pump operates better in	D
	A. Faisalabad	
	B. Karachi	
	C. Gujranwala	
	D. Jhelum	~
93	Which one of the following is a correct statement?	C

	A. In juice factory the open impeller pumps are best choice	
	B. Drain water should be handled with closed impeller pumps	
	C. Canal water should be handled with semi-open impeller pumps	
	D. Milk must be handled with open impeller pumps	
94	A centrifugal pump with same specifications can give the better	А
	performance when treat one of the following with same	
	percentage of water/milk in case of juices/milk shake.	
	A. Orange juice	
	B. Date milk shake	
	C. Apple juice	
	D. Apple milk shake	
95	The most influential pressure in pumps that can be responsible to damage	В
	the pumps internal parts is known as	
	A. NPSH required	
	B. NPSH Available	
	C. Water pressure	
	D. Suction pressure	~
96	In pumps, water/liquid moves from to	C
	A. Lower pressure to higher pressure	
	B. Higher pressure to lower pressure	
	C. Lower inlet pressure to higher outlet pressure	
07	D. Higher inlet pressure to lower outlet pressure	D
97	Hand pump operates under the	В
	A. Positive displacement phenomena	
	B. Reciprocating and pressure difference phenomena	
	C. Rotary pump phenomena	
08	D. Fluige type pullip Diston assembly and cylinder are main components of	D
90	Piston assembly and cylinder are main components of	D
	A Turbine	
	B Reciprocating	
	C Submersible	
	D None of the options	
99	The pump with diffuser type casing are commonly known as	B
,,,	A Submersible pumps	D
	B. Turbine pumps	
	C. Reciprocating	
	D. Golden pumps	
100	Kg/cm ² with the increase in the specific gravity of a liquid.	D
	A. Option 1 (Decrease)	
	B. Option 2 (Increases)	
	C. Option 3 (Proportional)	
	D. Both 2 and 3	
101	The flow comes in the forms of pulses from the following pump	С
	A. Option 1 (Hand pump)	
	B. Option 2 (Reciprocating pump)	

	C. Both option 1 and 2	
	D. None of the options	
102	The density of the liquid isproportional to the pressure	С
	produced by a pump.	
	A. Inversely	
	B. Constant	
	C. Directly	
	D. None of the above	
103	type of pumps are not suitable to handle the viscous fluid	D
	A. Gear pump	
	B. Plunger type pump	
	C. Reciprocating pump	
	D. All of the above	
104	$Q_1/Q_2(P_1)^{1/3}/(P_2)^{1/3}$	А
	A. Equal to	
	B. Less than	
	C. Greater than	
	D. None of the above	
105	If a curve falls after rising to a limiting height upto a designed point with	С
	the increase in the discharge is known as	
	A. Overlapping curves	
	B. Discharge vs head curves	
	C. Non-overlapping curves	
	D. None of the above	
106	The pump with open impeller can handle sewage water.	D
	A. Centrifugal pump	
	B. Gear pump	
	C. Rotary pump	
	D. None of the options	
107	are necessary to overcomephenomena	А
	A. Automatic quick closing valves, water hammer	
	B. Fly wheels, cavitation	
	C. Automatic controlled bypass, cavitation	
	D. Net positive suction head, cavitation	
108	Coal slurry can be handled by pump	В
	A. Open impeller centrifugal pump	
	B. Special duties	
	C. Plunger type pump with open casing	
	D. None of the above	_
109	If the multiple of pipe diameter and velocity is directly proportional to 1	В
	or less than 1, the flow is known as	
	A. Viscous flow	
	B. Steady flow	
	C. Non viscous flow	
	D. None of the options	
110	The frictional resistance for fluids in motion is?	A

	A. Proportional to the velocity in laminar flow and to the square of	
	the velocity in turbulent flow	
	B. Proportional to the square of the velocity in laminar flow and to	
	the velocity in turbulent flow	
	C. Proportional to the velocity in both laminar flow and turbulent \tilde{a}	
	D. Proportional to the square of the velocity in both laminar flow and turbulent flow	
111	Calculate the mean hydraulic radius for a channel having 20m ² cross	А
	sectional area and 50m of wetted perimeter.	
	A. 0.4m	
	B. 0.5m	
	C. 0.6m	
	D. 0.7m	
112	kV^2/2g represents the losses in very long pipes	В
	A. option 1 (significant)	
	B. option 2 (insignificant)	
	C. none of the options	
	D. Both option 1 and 2	
113	The figure contains irregularity and inertia forces is known as	С
	A. Roughness factor chart	
	B. Pie-chart	
	C. Moody diagram	
	D. None of the above	
114	In which type of turbines, the water flows axially in and axially out.	С
	A. Pelton	
	B. Francis	
	C. Kaplan	
	D. Turgo	
115	Water hammer phenomena occurs in:	A
	A. Penstock	
	B. Rotors	
	C. Buckets	
116	D. Propeller	•
110	In the hydroelectric power station, function of runner is	А
	A. Convert kinetic energy to pressure energy	
	C. Convert liquid to gos	
	C. Convert inquid to gas	
117	D. Convertigas to inquite In parallel pipes $Q=2$	D
11/	$\frac{1}{4} \int \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{2}} \frac{1}$	d
	$\begin{array}{c} \mathbf{A}, \ \mathbf{U}^{\perp}\mathbf{U}^{\perp$	
	$D. \qquad (27)$	
	$\nabla \cdot \nabla \nabla^{\perp} \nabla \nabla \nabla^{\perp} \nabla \nabla \nabla^{\perp} \nabla \nabla $	
118	Which among the following does not depend on the friction factor?	D
110	A. Pipe diameter	

	B. Fluid density	
	C. Viscosity	
	D. Weight	
119	Example of turbulent flow?	А
	A. Smoking rises from cigarette	
	B. Flow on a symmetric airfoil	
	C. Laminar flow	
	D. Turbulent flow on the airfoil	
120	Value of Z in elevation head of potential energy?	В
	A. non absolute	
	B. absolute	
	C. both A and B	
	D. none of these	
121	Vertical Centrifugal pumps are also known as:	А
	A. Cantilever pumps	
	B. Hydrodynamic pump	
	C. Mechanical pump	
	D. Hydroelectric pump	
122	The maximum volumetric efficiency of a pump (100cc) is:	D
	A. 60%	
	B. 70%	
	C. 80%	
	D. D. 90%	
123	Which statement is correct in case of a centrifugal pump?	D
	A. The centrifugal pump is suitable for large discharge and smaller	
	heads.	
	B. The centrifugal pump requires less floor area and simple	
	foundation as compared to reciprocating pump.	
	C. The efficiency of centrifugal pump is less as compared to	
	reciprocating pump.	
	D. All the above.	
124	Which of the following is not a type of positive displacement pumps?	C
	A. Reciprocating pump	
	B. Rotary displacement pump	
	C. Centrifugal pump	
	D. None of the above	
125	Reciprocating pump is also known as the?	D
	A. Negative displacement pump	
	B. Emulsion pump.	
	C. Diaphragm pump	
	D. D. Positive Displacement pump	~
126	In centrifugal pumps, maximum efficiency is obtained when the blades	C
	are?	
	A. straight	
	B. bent forward	

	C. bent backward	
	D. D. radial	
127	Reciprocating pumps are no more to be seen in industrial applications as	D
	compared to centrifugal pumps because of:	
	A. High initial and maintenance cost.	
	B. Necessity of air vessel	
	C. Lower discharge	
	D. All of above	
128	Which of the following is taken into account during a characteristic	А
	curve?	
	A. Flow rate	
	B. Cavitation	
	C. Tolerances	
	D. Casing	
129	With the increase in the input power of a pump, efficiency?	В
	A. Increases	
	B. Decreases	
	C. Same	
	D. Independent	
130	One mechanical horsepower is equal to:	С
	A. 102 watts	
	B. 735.5 watts	
	C. 745.7 watts	
	D. Both b and c	
131	The process of filling the liquid into the suction pipe and pump casing up	С
	to the level of delivery valve is called as	
	A. Filling	
	B. Pumping	
	C. Priming	
	D. Leveling	
132	According to Darcy's Law, the flow rate through a porous media is	C
	inversely proportional to:	
	A. Head loss	
	B. Cross sectional area	
	C. Length of flow paths	
	D. None of the options	
133	Water from a valley with 1510m a.m.s.l flows towards a mountain with	D
	1505m a.m.s.l, with no change in discharge in the valley is known as	
	A. Unsteady flow	
	B. Gravity flow	
	C. Steady gravity flow	
	D. Steady flow	
134	Suppose a gas flow with no variation in its density then the flow is known	C
	as	
	A. Compressible fluid	
	B. Unsteady flow	

	C. Incompressible fluid	
	D. Steady flow	
135	In a flowing water if the front of eddies is towards the front more than the	В
	backside then the flow is known as	
	A. Sub critical flow	
	B. Super critical flow	
	C. Critical flow	
	D. None of the options	
136	The temperature above which a fluid changes its phase permanently is	D
	known as	
	A. Absolute temperature	
	B. Critical pressure	
	C. Both the options	
	D. None of the options	
137	The steady flow has the value of coefficient of velocity	С
	A. 1.01	
	B. 1.06	
	C. 2	
	D. None of the above	
138	A liquid flows through pipes 1 and 2 with the same flow velocity. If the	С
	ratio of their pipe diameters d1 : d2 be 3:2, what will be the ratio of the	
	head loss in the two pipes?	
	A. 3:2	
	B. 9:4	
	C. 2:3	
	D. 4:9	
139	$hL = f(L/D) (V^2/2g)$ is known as	С
	A. Pipe friction equation (Option 1)	
	B. Darcy Weisbach equation (Option 2)	
	C. Both Option 1 & 2	
	D. Hazen Williams equation	
140	When a body floating in a liquid is displaced slightly, it oscillates about	D
	A. Center of gravity	
	B. Center of buoyancy	
	C. Center of pressure	
	D. Metacenter	
141	The buoyant force on anybody is equal to of fluid displaced.	С
	A. Mass	
	B. Volume	
	C. Weight and Volume	
	D. Weight	
142	As diameter of the pipe increases, the head loss will	В
	A. Increases	
	B. Decreases	
	C. Remains same	
	D. None of these	

143	Steam turbines are not used in:	С
	A. Thermal Power Plants	
	B. Textile Factory	
	C. Jet Engines	
	D. Sugar Factory	
144	In which type of turbines, the water flows axially in and axially out.	С
	A. Pelton	
	B. Francis	
	C. Kaplan	
	D. Turgo	
145	The Froude's number for a flow in a channel section is 1. What type of	В
	flow is it?	
	A. Sub Critical	
	B. Critical	
	C. Super critical	
	D. Laminar	
146	Which geometric parameter determines the efficiency of the channel?	В
	A. Hydraulic depth	
	B. Hydraulic radius	
	C. Section factor	
	D. Normal depth	
147	True one-dimensional flow occurs when	А
	A. The direction and magnitude of the velocity at all points are	
	identical	
	B. The velocity of successive fluid particles, at any point, is the same	
	at successive periods of time	
	C. The magnitude and direction of the velocity do not change from	
	point to point in the fluid	
	D. The fluid particles move in plane or parallel planes and the	
	streamline patterns are identical in each plane	
148	The discharge in an open channel corresponding to critical depth is	C
	A. Zero	
	B. Minimum	
	C. Maximum	
	D. None of these	
149	The critical depth meter is used to measure	C
	A. Velocity of flow in an open channel	
	B. Depth of flow in an open channel	
	C. Hydraulic jump	
	D. Depth of channel	~
150	Fluid is a substance which offers no resistance to change of	C
	A. Pressure	
	B. Flow	
	C. Shape	
	D. Volume	
151	The pressure less than atmospheric pressure is known as	D

	A. Suction pressure	
	B. Vacuum pressure	
	C. Negative gauge pressure	
	D. All of these	
152	In open channel flow in a rectangular channel, the ratio between the	С
	critical depth and the initial depth, when a hydraulic jump occurs	
	is?	
	A. 0.5	
	B. 0.84	
	C. 1.84	
	D. 1.25	
153	Pick out the wrong statement?	В
	A. A fluid mass is free from shearing forces, when it is made to rotate	
	with a uniform velocity	
	B. Newton's law of viscosity is not applicable to the turbulent flow	
	of fluid with linear velocity distribution	
	C. Laminar flow of viscous liquids is involved in the lubrication of	
	various types of bearings	
	D. Rise of water in capillary tubes reduces with the increasing	
	diameter of capillary tubes	
154	Pick out the wrong statement?	В
	A. The eddy viscosity is a function of the type of turbulence involved	
	B. The eddy viscosity is a fluid property	
	C. The viscosity of gas increases with increase in temperature	
	D. The viscosity of a liquid increases with decrease in temperature	
155	Pick out the correct statement pertaining to Venturimeter ?	D
	A. A Venturimeter with a fixed pressure drop discharges more, when	
	the flow is vertically downward, than when the flow is vertically	
	D The configuration of a Venturing ten is always write	
	B. The co-efficient of contraction of a venturimeter is always unity	
	C. For a fixed pressure drop, the discharge of a gas through a Vanturimeter is greater, when compressibility is taken into	
	secount then when it is nogle	
	D None of these	
156	The unit of surface tension is	Δ
150	A N/m	Δ
	$B N/m^2$	
	$C N/m^3$	
	D. N-m	
157	The flow of water through the hole in the bottom of a wash basin is an	С
	example of	
	A. Steady flow	
	B. Uniform flow	
	C. Free vortex	

	D. Forced vortex	
158	The value of coefficient of discharge is the value of	А
	coefficient of velocity.	
	A. Less than	
	B. Same as	
	C. More than	
	D. None of these	
159	The hydraulic mean depth for a circular pipe of diameter (d) is	В
	A. d/6	
	B. d/4	
	C. d/2	
	D. d	
160	Differential manometer gives theamong two pressures	С
	A. Variation	
	B. Difference	
	C. Both a and b	
	D. None of the option	

Sr. #	MCQs	Answer
161	The difference between reference and potential ET lies in theA. SoilB. ClimateC. VegetationD. Water	С
162	The value of Crop coefficient Kc lies between A. $0.2 = kc = 1.3$ B. $0.2 = kc = 0.3$ C. $0.12 = kc = 1.3$ D. $1.0 = kc = 0.3$	А
163	 Product of soil coefficient, reference evapotranspiration, and crop coefficient resulted in A. Potential evapotranspiration B. Actual evapotranspiration C. Reference evapotranspiration D. All of the above 	В
164	 which is not a component of the hydrograph A. Base flow B. Surface Runoff C. Infiltration D. Peak Point 	С

165	The hydrograph gradually rises and reaches its peak value after	D
	A. lag time	
	B. time of concentration	
	C. basin lag	
	D. both A & C	
166	Total runoff ordinate are actually the values of	В
	A. Direct runoff	
	B. Gauged discharge of stream	
	C. Baseflow	
	D. Unit hydrograph ordinates	
167	The sum of overland flow, interflow, and the groundwater flow	D
	constitutes the	
	A. Direct runoff	
	B. Total runoff	
	C. Streamflow	
	D. Both B & C	
168	The lines joining all points in a basin of some key time elements in a	Α
	storm, such as beginning of precipitation, are called	
	A. Isochrones	
	B. Isobars	
	C. Isohyets	
	D. Isotherm	
169	which one is not a method for the estimation of runoff	D
	A. Empirical Formulas, Curves & Tables	
	B. Infiltration method	
	C. Rational method	
	D. Energy balance method	
170	Procedure to determine the outflow hydrograph of a river given the	A
	inflow hydrograph at one or more upstream points is known as	
	A. Flow Routing	
	B. Flow duration curves	
	C. Hyetograph	
	D. Flow measurement	
171	The water falling on the earth surface in any form is called	D
	A. Atmosphere	
	B. Climate	
	C. Weather	
	D. Precipitation	
172	Hails are the falling of	В
	A. Water	
	B. Lumps	
	C. Vapors	
	D. Rain	

173	Frontal Rain is caused by	С
	A. Convection currents	
	B. Winds from sea	
	C. Cyclonic activity	
	D. Condensation of water evaporated from mountains	
174	In which region does the rainfall occur throughout the year	А
	A. Equatorial region	
	B. Polar region	
	C. Sub polar region	
	D. Middle latitude region	
175	The main factor which affects the infiltration capacity is	D
	A. Thickness of saturated layer	
	B. Depth of surface detention	
	C. Soil moisture	
	D. All the above	
176	The surface runoff is due to	C
	A. Initial rain	
	B. Residual rain	
	C. Rain in the net supply interval	
	D. All the above	
177	Hydrology is the science which deals with	D
	A. Surface Water	
	B. Underground water	
	C. River water	
	D. Both A & B	
178	18. Which of the following are used to store water during peak periods?	D
	A. Sews	
	B. Canals	
	C. Storage drums	
	D. Storage Reservoirs	
179	Isohyets are the imaginary lines joining the points of equal	D
	A. Pressure	
	B. Height	
	C. Humidity	
	D. Rainfall	
180	Which of the following is the largest reservoir within the hydrologic	В
	cycle?	
	A. Ice sheets	
	B. The oceans	
	C. Groundwater	
	D. The atmosphere	

181	A rainfall of 1.5 cm occurred in a 6-hr storm and if φ index was 0.20	В
	cm/h. the rainfall excess was	
	A. 0.0 cm	
	B. 0.30 cm	
	C. 1.20 cm	
	D0.30 cm	
182	Spillway of major storage projects are usually designed for a fold of	В
	A. 100 years	
	B. 1000 years	
	C. 30 years	
	D. 60 years	
183	Mean precipitation over an area is best obtained from the rain gauges	D
	observations by the following method:	
	A. Arithmetic mean	
	B. thiessen polygon	
	C. Isohyetal map	
	D. Orographically weighted isohyetal map	
184	A lysimeter is used to measure	D
	A. infiltration	
	B. evaporation	
	C. evaportranspiration	
	D. surface run-off	
185	The volume of water that can be released by gravitational flow from a	В
	unit volume of aquifer is called	
	A. porosity	
	B. specific yield	
	C. specific retention	
	D. specific capacity	
186	Hydrology is the science which deals with	D
	A. rain water	
	B. river water	
	C. sea water	
	D. surface and groundwater	
187	The main factor which affects the infiltration capacity, is	D
	A. thickness of saturated layer	
	B. depth of surface detention	
	C. soil moisture	
	D. all the above	
188	Precipitation includes	D
	A. rain	
	B. snow	
	C. hail	
	D. all the above	

189	Sharp created weirs are generally used for	А
	A. for large flows	
	B. for small flows	
	C. for streams with high sediment load	
	D. for medium flow	
190	The average mean velocity of a stream having depth, h, may be obtained	А
	by taking the average of the readings of a current meter at a depth of	
	0.1 h and 0.9 h	
	A. 0.2h and 0.8h	
	B. 0.3h and 0.7h	
	C. 0.4h and 0.6h	
191	The time required by rain water to reach the outlet of drainage basin is	А
	generally called	
	A. time of concentration	
	B. time of overland flow	
	C. concentration time of overland flow	
100	D. duration of ramial	
192	Consumptive use of a crop during growth is the amount of	D
	A. interception	
	B. transpiration	
	C. evaporation	
102		D
193	The principle of continuity is based on	В
	A. law of conservation of mass	
	D. law of conservation of momentum	
	D all of the above	
104	Useful moisture for plant growth is	•
194	A capillary water	A
	B gravity water	
	C hydroscopic water	
	D. chemical water	
195	The filed capacity of a soil depends on	С
175	A capillary tension in the soil	C
	B. porosity of soil	
	C. both a and b	
	D. none of the above	
196	The useful soil moisture within root zone is equal to	D
	A. field capacity	
	B. saturation capacity	
	C. moisture at permanent wilting point	
	D. difference between field capacity and permanent wilting point	

197	A land is said to be water logged if its soil pores within	D
	A. a depth of 40cm are saturated	
	B. a depth of 50cm are saturated	
	C. root zone of the crop are saturated	
	D. all of above	
198	An intense storm involves	D
	A. greater intensity	
	B. greater kinetic energy	
	C. greater potential energy	
	D. both A and B	
199	Peak runoff rate determined by rational method for 10 years return period	В
	from watershed area of 75 bectares having run off coefficient as 0.44	-
	with rainfall intensity of 75 mm/h is	
	A $6.875 \text{ m}^3/\text{h}$	
	$B_{c} = 6.875 \text{ m}^{3}/\text{s}$	
	C. $68.75 \text{ m}^3/\text{s}$	
	D. none of above	
200	The instrument used for measuring the velocity of flow, is known as	С
	A. venture meter	
	B. orifice meter	
	C. pitot tube	
	D. weir	
201	The movement of water through the soil profile is called	В
	A. Infiltration	
	B. Percolation	
	C. Runoff	
	D. Transpiration	
202	Infiltration rate is high; water will pass through the soil surface	В
	and erosion will	
	A. Less, increase	
	B. More, reduce	
	C. Less, reduce	
	D. More increase.	
203	The rate of evaporation has been found to with in the salt	D
	content of the water	
	A. Increase, decrease	
	B. Decrease, increase	
	C. Decrease, decrease	
	D. Increase, increase.	
204	To find the evaporation from reservoirs the calculated evaporation should	А
	be multiplied	
	A. 0.77	
	B. 0.67	
	C. 7.7	
	D. 6.7	

205	The ratio of weight of water transpired to the weight of dry matter in the	А
	plant is called	
	A. Transportation ratio	
	B. Evapotranspiration ratio	
	C. Infiltration ratio	
	D. None of those	
206	Run off will occur only when the rate ofexceeds the rate at which	А
	water infiltrate in the soil	
	A. Precipitation	
	B. Infiltration	
	C. Evaporation	
	D. None of these	
207	The ratio of the peak run off rate to the rainfall intensity is called	А
	A. Run of co-efficient	
	B. Intensity co-efficient	
	C. Infiltration co-efficient	
	D. none of these.	
208	Ratio of actual ET of a specific crop to potential ET is called:	В
	A. ET ratio	
	B. crop coefficient	
	C. pan coefficient	
	D. depletion factor	
209	The period of direct surface runoff of the unit hydrograph is called:	D
	A. time base	
	B. base width	
	C. unit period	
	D. both (a) & (b)	
210	When volume of direct surface runoff is divided by the area of drainage	А
	basin under study, we get:	
	A. net rainfall	
	B. unit hydrograph ordinates	
	C. base flow	
	D. total runoff	
211	Unit hydrograph ordinates are multiplied by Pnet to get direct runoff	C
	ordinates; this process is called:	
	A. UG derivation	
	B. UG alteration	
	C. UG application	
	D. base flow separation	

212	While converting a 3-hr UG having time base of 24 hours to 6-hr UG	А
	using S-curve method, what will be required number of successions to be	
	developed?	
	A. 8	
	B. 4	
	C. 10	
	D. 12	
213	While converting a 4-hr UG into 6-hr UG using S-curve method, the	В
	ordinates of S-curve difference will be multiplied by:	
	A. 6/4	
	B. 4/6	
	C. 2	
	D. 10	
214	Fraction of total incoming radiation, which is reflected back by the earth	А
	to atmosphere, is called:	
	A. albedo	
	B. lapse rate	
	C. insulation	
	D. both A & B	
215	Precipitation which occurs due to clash of two air masses having	В
	contrasting temperatures and densities, is called:	
	A. convectional precipitation	
	B. frontal precipitation	
	C. orographic precipitation	
	D. cyclonic precipitation	
216	Which of the following is non-recording raingauge?	D
	A. tipping bucket gauge	
	B. weighing type	
	C. float type	
	D. Symon's gauge	
217	Formation of a layer or film of water before it starts flowing to generate	С
	runoff, is called:	
	A. depression storage	
	B. percolation	
	C. detention storage	
	D. none of these	
218	When an air mass is cooled at constant vapor pressure, it gets condensed	С
	at a temperature, called:	
	A. lapse rate	
	B. saturation point	
	C. dew point	
	D. none of these	

219	A constant infiltration rate, which is achieved after the soil is saturated, is	В
	called:	
	A. maximum infiltration rate	
	B. basic infiltration rate	
	C. lapse rate	
	D. none of these	
220	Which of the following has same units as that of infiltration rate?	В
	A. runoff	
	B. evapotranspiration	
	C. rainfall intensity	
	D. both (b) & (c)	
221	In hydrograph theory, groundwater contribution to the stream is called:	А
	A. base flow	
	B. sub-surface flow	
	C. surface flow	
	D. both b& c	
222	Which of the following is part of direct runoff?	D
	A. base flow	
	B. sub-surface flow	
	C. surface flow	
	D. both (b)& (c)	
223	In hydrologic cycle filling of undulations on the earth surface by water	С
	before it starts flowing, is called:	
	A. infiltration	
	B. percolation	
	C. depression storage	
	D. seepage	
224	Difference between saturated vapor pressure and actual vapor pressure is	D
	called:	
	A. relative humidity	
	B. absolute humidity	
	C. specific humidity	
	D. saturation deficit	
225	Ratio of actual vapor pressure to saturation vapor pressure is called:	А
	A. relative humidity	
	B. absolute humidity	
	C. specific humidity	
	D. saturation deficit	
226	Rate of decrease in atmospheric temperature per unit rise in vertical	В
-	direction through troposphere is called:	
	A. albedo	
	B. lapse rate	
	C. insulation	
	D. both (a) & (b)	

227	Lines of equal atmospheric pressure are known as:	В
	A. isohyets	
	B. isobars	
	C. isotherms	
	D. contours	
228	Which of the following instruments is used for measuring relative	С
	humidity?	
	A. barograph	
	B. bimetallic actinography	
	C. hair hygrograph	
	D. pyranometer	
229	Which of the following instruments is used for measuring radiation heat?	D
	A. barograph	
	B. thermograph	
	C. hair hygrograph	
	D. pyranometer	
230	Which of the following rain gauges cannot be used for recording snow?	С
	A. weighing type	
	B. float type	
	C. tipping bucket type	
	D. both (a) & (b)	
231	The capacity of one bucket in tipping bucket raingauge is:	С
	A. 0.25 mm	
	B. 0.5 mm	
	C. 1.5 mm	
	D. 1.25 mm	
232	For saturated condition, when humidity is 100%, the difference between	А
	dry bulb and wet bulb temperatures is:	
	A. maximum	
	B. relatively high	
	C. negative	
	D. zero	
233	Precipitation that occurs due to lifting of moist air after striking with	D
	mountain barriers is called:	
	A. convectional precipitation	
	B. frontal precipitation	
	C. orographic precipitation	
	D. cyclonic precipitation	
234	Ratio of rainfall in a particular year to average annual rainfall is called:	С
	A. rainfall ratio	
	B. index of wetness	
	C. percentage rainfall	
	D. specific rainfall	

235	An index of wetness of 60% shows that in a particular year, there is:	С
	A. 40% more rainfall	
	B. 60% more rainfall	
	C. 40% less rainfall	
	D. 60% less rainfall	
236	Which of the following methods is used for adjustment of rainfall records	С
	at a station?	
	A. station-year method	
	B. isohyetal method	
	C. double mass analysis	
	D. arithmetic average method	
237	In which method of determining mean aerial depth of precipitation, the	В
	addition or removal of a raingauge will change the whole scenario?	
	A. arithmetic average method	
	B. Thiessen polygon method	
	C. isohyetal method	
	D. both (a) & (b)	
238	If coefficient of variation calculated from rainfall data of different	В
	raingauge stations in an area is 40% and permissible error in estimating	
	average depth of rainfall is 10%, what would be the optimum number of	
	raingauge stations to be established in the area?	
	A. 4	
	B. 16	
	C. 30	
	D. 3	
239	The graph between rainfall intensity and time is called:	А
	A. hyetograph	
	B. hydrograph	
	C. mass curve of rainfall	
	D. both (a) & (b)	
240	Time from the centeroid of net rainfall to the peak of hydrograph is	D
	called:	
	A. time of concentration	
	B. lag time	
	C. basin lag	
	D. both (b) & (c)	

Sr. #	MCQ	Answer
241	Colluvial soils (talus) are transported by:	С
	A. Water	
	B. Wind	
	C. Gravity	
	D. Ice	
242	Water-transported soils are termed:	В
	A. Acoline	

	B. Alluvial	
	C. Colluvial	
	D. Till	
243	Glacier-deposited soils are called:	С
	A. Talus	
	B. Loess	
	C. Drift	
	D. None of above	
244	Cohesionless soils are formed due to:	С
	A. Oxidation	
	B. Hydration	
	C. Physical disintegration	
	D. Chemical decomposition	
245	When the products of rock weathering are not transported but remain at the	С
_	place of formation, the soil is called:	_
	A. Alluvial soil	
	B. Talus	
	C. Residual soil	
	D. Acolian soil	
246	The following type of soil is not glacier-deposited.:	D
	A. Drift	
	B. Till	
	C. Outwas BRGFh	
	D. Bentonite	
247	The water content of a highly organic soil is determined in an oven at a	С
	temperature of:	
	A. 105°C	
	B. 80°C	
	C. 60°C	
	D. 27°C	
248	Pycnometer method for water content determination is more suitable for:	С
	A. Clay	
	B. Loess	
	C. Sand	
	D. Silt	
249	The gas formed by the reaction of calcium carbide with water is:	D
	A. Carbon dioxide	
	B. Sulphur dioxide	
	C. Ethane	
	D. Acetylene	
250	The ratio of the volume of voids to the total volume of soil is:	D
	A. Voids ratio	
	B. Degree of saturation	
	C. Air content	
	D. Porosity	
251	Dry density of soil is equal to the:	В
	A. Mass of solids to the volume of solids.	

	B. Mass of solids to the total volume of soil.	
	C. Density of soil in the dried condition.	
	D. None of the above	
252	The most accurate method for the determination of water content in the	В
	laboratory is:	
	A. Sand bath method	
	B. Oven-drying method.	
	C. Pycnometer method.	
	D. Calcium carbide method.	
253	A soil has a bulk density of 1.80 g/cm ³ at a water content of 5%. If the void ratio	В
	remains constant then the bulk density for a water content of 10% will be:	
	A. 2.00 g/cm	
	B. 1.88 g/cm	
	C. 1.82 g/cm	
	D. 1.95 g/cm	
254	In a wet soil mass, air occupies one-sixth of its volume and water occupies one-	D
	third of its volume. The void ratio of the soil is:	
	A. 0.25	
	B. 0.50	
	C. 1.50	
	D. 1.00	
255	A soil sample has a specific gravity of 2.60 and a void ratio of 0.78. The water	В
	content required to fully saturate the soil at that void ratio will be:	
	A. 20%	
	B. 30%	
	C. 40%	
	D. 60%	
256	In Stokes' law, the terminal velocity of the particle is:	В
	A. Proportional to the radius of the particle.	
	B. Proportional to the square of the radius of particle.	
	C. Inversely proportional to the square of the radius of particle.	
	D. None of the above.	
257	Stoke's law does not hold good if the size of particles is:	D
	A. Greater than 0.2 mm	
	B. less than 0.2 μm	
	C. Neither A Nor B	
	D. Both A and B	
258	Pretreatment of soil to remove the organic matter by oxidation is done with:	C
	A. Sodium hexametaphosphate	
	B. Oxygen	
	C. Hydrogen peroxide	
	D. Hydrochloric acidc	
259	The particle-size distribution curve with a hump is obtained for a:	C
	A. Uniform soil	
	B. Well-graded soil	
	C. Gap-graded soil	
	D. Poorly-graded soil	

260	For a well-graded sand, the coefficient of curvature should be:	В
	A. More than 3	
	B. Between 1 and 3	
	C. Less than 1	
	D. None of above	
261	For a dense sand, the relative density is:	В
_01	A. Between 35 and 65	-
	B. Between 65 and 85	
	C. Between 85 and 100	
	D. Greater than 100	
262	A well-graded sand should have:	В
	A. $Cu \ge 4.00$	
	B. Cu ≥ 6.00	
	C. Cu ≥ 1.00	
	D. Cu ≥ 3	
263	In hydrometer analysis for a soil mass:	С
	A. Both meniscus correction and dispersing agent correction are negative	_
	B. Both meniscus correction and dispersing agent correction are positive	
	C. Meniscus correction is positive while dispersing agent correction is negative	
	D. Meniscus correction is negative while dispersing agent correction is positive	
264	At shrinkage limit, the soil is:	С
	A. Dry	
	B. Partially saturated	
	C. Saturated	
	D. None of above	
265	The shrinkage index is equal to:	С
	A. Liquid limit minus plastic limit.	
	B. Liquid limit minus shrinkage limit.	
	C. Plastic limit minus shrinkage limit.	
	D. None of above.	
266	Toughness index of a soil is the ratio of:	А
	A. Plasticity index to the flow index.	
	B. Liquidity index to the flow index.	
	C. Consistency index to the flow index.	
	D. Shrinkage index to the flow index.	
267	A stiff clay has a consistency index of:	В
	A. 50-75	
	B. 75-100	
	C. Greater than 100	
	D. Less than 50	
268	The plasticity index of a highly plastic soil is about:	В
	A. 10-20	
	B. 20–40	
	C. Greater than 40	
	D. Less than 10	
269	The activity of the mineral montmorillonite is:	D
	A. Less than 0.75	

	B. Between 0.75 and 1.25	
	C. Between 1.25 and 4	
	D. Greater than 4	
270	A soil sample has I. = 45%, P = 25% and SL = 15% For a natural water content of	А
	30%, the consistency index will be:	
	A. 75%	
	B. 50%	
	C. 40%	
	D. 25%	
271	For the soil with LL = 45%, P = 25% and Su = 15%, the plasticity index is:	В
	A. 50%	
	B. 20%	
	C. 60%	
	D. 40%	
272	IS classification of soil in many respects is similar to:	С
	A. AASHTO classification	
	B. Textural classification	
	C. Unified soil classification	
	D. MIT classification	
273	The maximum size of particles of silt is:	А
	Α. 75 μ	
	Β. 60 μ	
	C. 2 μ	
	D. 0.2 μ	
274	The maximum size of particles of clay is:	С
	A. 0.2 mm	
	B. 0.02 mm	
	C. 0.002 mm	
	D. 0.0002 mm	
275	According to IS classification system, the soils can be classified into:	В
	A. 15 groups	
	B. 18 groups	
	C. 3 groups	
	D. 7 groups	
276	The soils which plot above the A line in the plasticity chart are:	Α
	A. clays	
	B. silts	
	C. sands	
	D. organic soils	
277	A silty soil gives a positive reaction in:	В
	A. Toughness test	
	B. Dilatancy test	
	C. Dry strength test	
	D. None of above	
278	The maximum value of the term (F-15) in the group index is taken as:	C
	A. 20	
	B. 30	

	C. 40	
	D. 60	
279	The behavior of clay is governed by:	В
	A. Mass energy	
	B. Surface energy	
	C. Both A. and B.	
	D. Neither A. and B.	
280	Honey-combed structure is found in:	С
	A. Gravels	
	B. Coarse sands	
	C. Fine sands and silts	
	D. Clay	
281	The weakest bond in soils is:	D
	A. lonic bond	
	B. Covalent bond	
	C. Hydrogen bond	
	D. Secondary valance bond	
282	An octahedral unit has:	В
	A. Four negative charges	
	B. Three negative charges	
	C. One negative	
	D. No negative charge	
283	In illite mineral, the bond between structural units is:	В
	A. Hydrogen bond	
	B. Potassium ion bond	
	C. Water molecules bond	
	D. Covalent bond	
284	The plasticity characteristics of clays are due to:	А
	A. Adsorbed water	
	B. Free water	
	C. Capillary water	
	D. None of above	
285	In fine sands and silts, the most common type structure is:	В
	A. Single	
	B. Honey comb	
	C. Flocculated	
	D. Dispersed	
286	The base exchange capacity of the mineral montmorillonite is about:	А
	A. 70 meq/100 g	
	B. 700 med/100 g	
	C. / meq/100 g	
007	D. 40 med/ 100 g	C
287	Capillary rise in a small tube is due to:	C
	A. Conesion	
	B. Adnesion	
	C. Both conesion and adhesion	
	D. Neither A. nor B.	
288	The surface tension of water at normal temperatures is about:	С
-----	---	---
	A. 0.73 dynes/m	
	B. 0.73 N/m	
	C. 0.073 N/m	
	D. 0.073 kN/m	
289	The capillary rise in clay is usually between:	D
_0)	A. 0.10 and 0.15 m	2
	B. 0.3 and 1.0 m	
	C. 1.0 and 10.0 m	
	D. greater than 10 m	
290	A pF value of zero corresponds to a soil section of:	С
	A. 1 m	-
	B. zero metre	
	C. 1 cm	
	D. 10 cm	
291	The frost heave in the following type of soils is generally high:	С
271	A. Coarse sands	C
	B. clavs	
	C. Fine sands and silts	
	D. gravels	
292	Bulking of sands is usually:	В
>	A. Less than 10%	2
	B. Between 20 to 30%	
	C. Greater than 30%	
	D. Between 10 to 20%	
293	The frost heave depth as percentage of the soil depth in fine sands and silts is	D
	about:	
	A. 4 to 5%	
	B. 5 to 10%	
	C. 10 to 15%	
	D. 20 to 30%	
294	The permeability of soil varies:	В
	A. inversely as square of grain size	
	B. as square of grain size	
	C. as grain size	
	D. inversely as void ratio.	
295	The maximum particle size for which Darcy's law is applicable is:	В
	A. 0.2 mm	
	B. 0.5 mm	
	C. 1.0 mm	
	D. 2.0 mm	
296	According to U.S.B.R, a soil with a coefficient of permeability of 10 mm/sec will	С
	be classified as:	
	A. Pervious	
	B. Impervious	
	C. Semi-pervious	
	D. Highly pervious	

297	The coefficient of permeability of clay is generally:	С
	A. Between 10 and 10-2 mm/s	
	B. Between 10 and 10 mm/s	
	C. Between 10 and 10 mm/s	
	D. Less than 10 mm/s	
298	A constant-head permeameter is used for:	А
_> 0	A. Coarse grained soils	
	B. Silty soils	
	C. Clavey soils	
	D. Organic soils	
299	The coefficient of permeability of a soil:	A
277	A, increases with an increase in temperature.	11
	B, increases with a decrease in temperature.	
	C, increases with a decrease in unit weight of water.	
	D. decreases with an increase in void ratio.	
300	For a sphere of 0.5 mm diameter, the specific surface is:	Δ
500	Δ 12 mm ⁻¹	2 \$
	B 6 mm ⁻¹	
	~ 1000 mm ⁻¹	
	$D \ 9 \ \mathrm{mm}^{-1}$	
201	Disintegration of rocks into smaller particles due to ice is a type of	
501	weathering	в
	weathering.	D
	B. Mechanical	
	D. None of these	
202	With the decrease in particle size with same volume of solids, soil	
302	norosity ?	Δ
	B Decreases	
	C Remains Constant	
	D. None of these	
303	A fully saturated soil bas	
505	A No airvoids	П
	R. No voids	D
	C Only water voids	
	D. Both a and c	
204	Soil compaction test is performed to find maximum density of soil at	
504	specific	П
	A Moisture content	D
	R. Compactive effort	
	C. Volume	
	D. Roth a and h	
205	density of soil bas the highest value	
305	uensity of soli has the highest value.	^
		A

	D. Saturated	
306	Material transported and deposited by running water is known as:	
	A. Colluvial	D
	B. Loess	
	C. Aeolian	
	D. Alluvial	
307	A rock composes of minerals that resist chemical weathering is called:	
	A. Stable rock	А
	B. Balance rock	
	C. Steady rock	
	D. None of these	
308	Atterberg limits are used for the classification of particles.	
	A. Coarse	В
	B. Finer	
	C. Medium	
	D. All of these	
309	For soil, the two main physical properties are:	
	A. Temperature & Density	
	B. Surface tension & capillarity	С
	C. Color and texture	
	D. All of them	
310	Formation of soil depends upon:	
	A. Weather	D
	B. Parent material	
	C. Time	
	D. Both a and b	
311	In unified classification system, Boulders are particles with size above	
	than	В
	A. 200 mm	
	B. 300 mm	
	C. 75 mm	
	D. 4.25 mm	
312	Void ratio tells us about the:	
	A. Viscosity	В
	B. Density	
	C. Both a & b	
	D. None of them	
313	In grain size analysis test, effective size is:	
	A. D10	А
	B. D30	
	C. D60	
	D. D70	
314	Porosity of soil is defined as the ratio of volume of voids to the total volume of	
	soil. Its value is always:	
	A. <1	С
	B. >1	
	C. 0 <n<1< td=""><td></td></n<1<>	

	D1	
315	In aquifer, hydraulic conductivity is equal in all directions.	
	A. Isotropic	А
	B. Anisotropic	
	C. Homogenous	
	D. Heterogenous	
316	The moisture content of soil at the boundary between solid and semi solid state	
	is called:	А
	A. Shrinkage limit	
	B. Plastic limit	
	C. Liquid limit	
	D. None of these	
317	rollers provide greater compaction pressure and kneading	
	effect.	В
	A. Smooth wheel	
	B. Sheepsfoot	
	C. Pneumatic	
	D. Vibratory	
318	If the soil voids are full of air, the soil is termed as:	
	A. Air entered soil	С
	B. Partially saturated air	
	C. Dry soil	
	D. Dehydrated air	
319	Which of the following soils has more plasticity index?	
	A. Sand	С
	B. Silt	
	C. Clay	
	D. Gravel	
320	Compaction of soil at a water content than Optimum Water	
	content results in random particle orientations.	
	A. Higher	В
	B. Lower	
	C. Equal	
	D. Higher or equal	

Sr. #	MCQ	Answer
321	The outlet type provided at the end in immediate vicinity of fall is	b
	a) AOSM	
	b) Open flume	
	c) pipe	
	d) all of these	
322	For the design of a lined channel, the formula commonly used is	с
	a) Kennedy's formula	
	b) Lacey's formula	
	c) Manning's formula	
	d) Lindley's formula	

323	In a gravity dam, slightly curved in plan, the external forces are resisted	b
	by	
	a) reinforcement provided in the dam body	
	b) weight of dam	
	c) arch action	
224	d) none of these	1
324	If two canals are taken off from both the flanks of a river at the site of a diversion	d
	head works, then the number of under studies and divide wall will respectively,	
	0e	
	b) 1 and 2	
	c) 2 and 1	
	d) 2 and 2	
325	Gravity dams transfer load to foundation by	а
	a) cantilever action	
	b) arch action	
	c) arch and cantilever action	
	d) none of these	
326	In a barrage project, a divide wall is provided to:	а
	a) separate the lower crest undersluice side from the higher crest weir side	
	b) separate the higher crest undersluice side from the higher crest weir side	
	c) keep the cross-currents away from the barrage body	
227	u) serve none of the above purposes	0
521	aligned	C
	a) parallel to the barrage axis	
	b) perpendicular to the divide wall	
	c) parallel to the divide wall	
	d) None of these	
328	For more or less equitable distribution of supply, the outlet types preferred, from	а
	head reach to tail are	
	a) AOSM anon fluma nina	
	a) AOSM, open nume, pipe	
	c) nine open flume AOSM	
	d) open flume AOSM nine	
	d) open nume, riconi, pipe	
329	In a gravity dam, the quantity of concrete is determined by	b
	a) strength of concrete b) dead weight of dam	-
	c) both strength and weight of concrete d) none of them	
330	Head sluices are the gate-controlled openings, in	с
	a) the entire length of the barrage	
	b) the undersluice length of the barrage	
	c) the regulator the main off taking canal	
1		1

331	For proportionality, weir type outlets should be set at depth:	d
	a) 0.3	
	b) 0.5	
	c) 0.6	
	d) 0.9	
332	The Garret's diagrams are based on	d
	a) Lacey's theory	
	b) Khosla's theory	
	c) Bligh's theory	
	d) Kennedy's theory	
333	The tunnel openings provided in front of a canal head regulator at a diversion	b
555	headworks	0
	a) Discharge sedimented water into the canal	
	b) discharge sediment load into the undersluices, from where ejects out to the	
	downstream river	
	c) discharge clear water into the canal	
	d) none of these	
334	Lacey's silt factor is proportional to	a
	× 10.5	
	a) d ^{0.5}	
	b) $d^{1.5}$	
	c) d^2	
	d) none of these	
	where d is the grain size	
335	A good irrigation module is one, which	с
		-
	a) draws heavy silt from the canal	
	b) draws clear water from the canal	
	c) draws fair share of silt from the canal	
	d) none of these	
336	An irrigation outlet is said to be proportional, when it's	b
	a) sansitivity is 1	
	a) Schöhlvrig 15 1	
	c) setting is 1	
	d) all of these	
337	Downstream section of straight drop spillway is called as	с
	a) apron	
	b) stilling basin	
	c) both (a) and (b)	

	d) none of above	
338	Rational method is suitable to compute peak runoff rate from	b
	a) large watersheds	
	a) faige watersheds	
	c) medium watersheds	
	d) none of these	
330	In plain areas, the irrigation canals are usually aligned along	d
559	In prain areas, the inigation canars are usually anglied along	u
	a) Across the contours	
	b) Contour lines	
	c) Valley lines	
	d) Ridge line	
340	The canal which is not supposed to do any irrigation is	d
	called	
	a) minor distributory	
	a) Infilor distributary	
	b) watercourse	
	d) major distributary	
241	What is the value of Pligh's coefficient for coarse grained soil?	h
341	a) 15	D
	a) 15 b) 12	
	(0) 12 (c) 5 to 9	
	d) 8	
342	If the value of Bligh's coefficient for a particular soil is equal to 12 then what is	а
542	the safe hydraulic gradient for that soil?	a
	a) 1/12	
	b) 1/9	
	c) 1/15	
	d) 1/5	
343	A dam reservoir which is not provided with gate controls on its spillway and other	c
	sluices is called	
	a) detention dam	
	b) storage reservoir	
	c) retarding basin	
	d) flood control reservoir	
344	A hydel power project has been envisaged to serve the water supply and irrigation	а
	needs of the area at its inception stage. The dam reservoir so constructed is known	
	as	
	a) multipurpose reservoir	
	b) single-purpose reservoir	
	c) distribution reservoir	
2.1-	d) retarding reservoir	
345	In which of the following reservoir the flood crest downstream can be better	C
	controlled and regulated properly?	
	a) Distribution reservoir	
	b) Multipurpose reservoir	

	c) Storage reservoir	
	d) Retarding reservoir	
346	The vertical component of the earthquake wave which produces adverse effects on	В
	the stability of a dam when is acting in	
	a) upward direction	
	b) downward direction	
	c) both upward and downward direction	
	d) any direction	
347	A gravity dam is subjected to hydrodynamic pressure caused by	с
	a) the rising waves of the reservoir when a flood wave enters into it	
	b) the rising waves in the reservoir due to high winds	
	c) the increase in water pressure momentarily caused by the horizontal earthquake	
	acting towards the reservoir	
	d) the increase in water pressure momentarily caused by the horizontal earthquake	
	acting towards the dam	
348	The upward acceleration of dam due to seismic activity will	а
	a) increase the base pressure	
	b) decrease the base pressure	
	c) not affect the effective weight of the dam	
2.40	d) increase the horizontal dynamic force	
349	The factor of safety against overturning generally varies between	а
	a) 2 to 3	
	b) 1.5 to 2	
	c) 0.5 to 1.5	
250	(d) 1 to 2 The better neution of a concrete or a mesonry gravity dam is youghly stenned in	1.
350	and a concrete of a masonry gravity dam is usually stepped in	D
	older to	
	a) increase the overturning resistance of the dam	
	c) decrease the shear strength	
	d) increase the frictional resistance	
251	What is the maximum permissible tensile stress for high concrete gravity dam	0
551	under worst conditions?	a
	a) 500 KN/m ²	
	b) 500 kg/cm^2	
	c) 5 kg/m^2	
	d) 50 KN/m ²	
352	What is the recommended value of shear friction factor against sliding?	с
002	a) More than unity	C
	b) Less than unity	
	c) More than 3 to 5	
	d) Less than 3	
353	Presence of tail-water in a gravity dam	d
_	a) increases the principal stress and decreases the shear stress	
	b) increases both the principal stress and the shear stress	
	c) decreases the principal stress and increases the shear stress	
	d) decreases both the principal stress and the shear stress	
354	An ungated spillway starts functioning as soon as the water level in the reservoir	с
	crosses the	

	a) maximum reservoir level	
	b) minimum reservoir level	
	c) maximum conservation level	
	d) full Supply level	
355	The spillway can be best built independently of the dam when there is	а
	a) deep narrow gorge with steep slopes	
	b) deep narrow gorge with gradual slopes	
	c) wide gorge with a gradual slope	
	d) wide valley with moderate slopes	
356	Which of the following is a secondary safety arrangement?	с
	a) Safety valves	
	b) Spillway gates	
	c) Subsidiary spillway	
	d) Energy dissipaters	
357	Which of the following spillway is least suitable to earthen dams?	а
	a) Ogee spillway	
	b) Chute spillway	
	c) Side-channel spillways	
	d) Shaft spillway	
358	In the functioning of an ogee spillway, the operating head	b
	a) frequently exceeds the design head	
	b) rarely exceeds the design head	
	c) never exceeds the design head	
	d) has no connection with the design head	
359	The spillway which can be called as an overflow spillway is essentially	a
	a) an ogee spillway	
	b) a shaft spillway	
	c) a chute spillway	
	d) a syphon spillway	
360	What is Bazin's profile?	а
500	a) Profile for the lower nappe of a free-falling jet	u
	b) The profile obtained for the upper nappe of a free-falling jet	
	c) Crest profile	
	d) Profile of both upper and lower nappe	
361	If the spillway is constructed in continuation to the dam at one end, it may be	b
001	called as	C
	a) saddle weir	
	b) flank weir	
	c) waste weir	
	d) temporary weir	
362	The spillway which can be adopted with ease on gravity as well as earthen dams is	b
	a) ogee spillway	
	b) chute spillway	
	c) both ogee and chute spillway	
	d) straight drop spillway	
363	The side slope of approach channel of chute spillway is	a

	a) 1:1	
	b) 1:1.5	
	c) 1:3	
	d) 1:2.5	
364	The portion of a chute spillway which is known as its control structure is	a
	a) low ogee weir	
	b) chute channel	
	c) approach channel leading the water from the reservoir to the ogee weir	
	d) silting basin at its bottom	
365	What is the path represented by the streamlines?	d
	a) Hydraulic Jump	
	b) Flow Net	
	c) Energy Dissipation	
	d) Water Flow	
366	How many corrections are needed for the complex profile broken from simple	с
	forms, to be valid?	
	a) 1	
	b) 2	
	c) 3	
	d) 4	-
367	What is the name of the gradient pressure at the exit end?	b
	a) Gradient of Pressure	
	b) Exit Gradient	
	c) Streamline Gradient	
2.60	d) Equipotential Gradient	
368	Which method is evolved by knosia for designing of hydraulic structures?	c
	a) Method of Gradients	
	b) Method of Variables	
	d) Method of Flow Nete	
260	d) Method of Flow Nets By how many considerations the depth downstream vortical sutoff is governed?	
309	by now many considerations the depth downstream vertical cutor is governed?	a
	a) 2 b) 1	
	(0) 1 (1) 2	
	d) 4	
370	Which type of weir is suitable for any type of foundation?	h
570	a) Sloping Weir	0
	b) Vertical Drop Weir	
	c) Parabolic Weir	
	d) Masonry Sloping Weir	
371	What is the main difference between a dam and weir?	а
	a) Height and Duration of Storage	
	b) Capacity of Water	
	c) Material used for Construction	
	d) Location of the Structure	
372	In which type of weir energy dissipation takes place?	d
	a) Barrage	
	b) Vertical Drop Weir	
	c) Sloping Weir	

	d) Parabolic Weir	
373	Which type of weir is of recent origin?	b
	a) Vertical Drop Weir	
	b) Masonry or Concrete Sloping Weir	
	c) Parabolic Weir	
	d) Barrage	
374	What is the difference between a weir and a barrage?	b
	a) Discharge Capacity	
	b) No Solid Obstruction	
	c) Storage Capacity	
	d) Velocity of Flow	
375	What type of losses can be mainly avoided by lining the canals?	b
	a) Evaporation Losses	
	b) Seepage Losses	
	c) Erosion of Canal Bed	
	d) Discharge Losses at Branch Canals	
376	What is the name given to the land unfit for agriculture due to waterlogging?	d
	a) Desert	
	b) Tundra	
	c) Waterlogged Area	
	d) Thur	
377	Depending on what factor does the lining of a canal can increase the capacity of	с
	the canal?	
	a) Width of the Canal	
	b) Type of Flow	
	c) Velocity	
	d) Side Slope	
378	What type of major dangers can the lining of canals extinguish?	b
	a) Leakages	
	b) Floods	
	c) Water-logging	
	d) Seepage Losses	
379	Calculate the central depth of a triangular channel section to carry a discharge of	а
	15 cumecs. Consider the available slope as 1 in 9000. Assume the side slopes of	
	the channel be 1.25:1 and manning's constant is 0.015 for good brick work in	
	lining.	
	a) 2.94 m	
	b) 3.14 m	
	c) 2.25 m	
200		
380	what is the safe limiting velocity for cement concrete lining?	c
	(a) 1.5 m/s	
	b) 2.2 m/s	
	(2) 2.7 m/s	
201	U) 1.0 III/8	
381	Dramage relief pockets are provided	a
	a) at isolated locations in the bed as well as sides of the fined canal b) in the hed of the senal	
	b) in the sides of the canal	
	d) anywhere in the canal	
1	ן ט) מווץ אווכול ווו נוול למוזמו	1

382	Pressure relief valves may help in	а
	a) releasing the hydrostatic pressure	
	b) holding the hydrostatic pressure	
	c) increasing the hydrostatic pressure	
	d) may increase or decrease the hydrostatic pressure	
383	Pipe drains run	а
	a) longitudinally on the bed and transverse to the length of canal on the side slopes	
	b) longitudinally to the length of the canal on the side slopes and transverse to the	
	bed	
	c) longitudinally to the length of the canal	
	d) transverse to the bed	
384	Which type of lining is adopted when the channels have become stable and no	d
	danger of scouring is expected?	
	a) Brick lining	
	b) Single burnt clay tile lining	
	c) In-situ cement concrete lining	
	d) Flexible membrane lining in the bed and rigid lining on the sides	
385	What are the types of sediment load?	с
	a) Bedload and Suspended load	
	b) Bedload and Dissolved load	
	c) Bedload, Dissolved load and Suspended load	
	d) Suspended load and Dissolved load	
386	On increasing velocity beyond the threshold stage of motion, the bed develops	b
	a) dunes with ripples	
	b) saw-tooth ripples	
	c) anti-dunes	
	d) flat surface	
387	hen the velocity is further increased beyond the stage where sand waves are formed	d
	in association with the surface waves, the waves are then called as	
	a) dunes	
	b) ripples	
	c) flat surface	
	d) antidunes	
388	On which factor does the movement of bedload depends?	а
	a) Velocity of Flow	
	b) Type of Flow	
	c) Depth of Flow	
	d) Width of the River	
389	What type of force is completely responsible for the bedload movement?	b
	a) Forces of Turbulence	
	b) Drag Force	
	c) Capillary Force	
	d) Gravity Force	
390	Which type of force is needed for suspension of suspended load in flowing water?	c
	a) Capillary Force	
	b) Drag Force	
	c) Forces of Turbulence	
	d) Gravity Force	
391	What cause is prime responsible for the heavy movement of water from main canal	а

	to branch canal?	
	a) Existence of Favorable Gradient	
	b) Velocity of Flow	
	c) Type of Flow	
	d) Depth of the Canal	
392	Water in which condition or state carry a maximum amount of sediment?	с
	a) Uniform State	-
	b) Vapor State	
	c) Floods	
	d) Ice	
393	What minimum value of shear stress is needed to move the sediment?	b
0,0	a) Critical Velocity Ratio	C
	b) Critical Shear Stress	
	c) Critical Velocity	
	d) Drag Force	
394	What is the main purpose of the canal escape?	h
571	a) To Maintain Uniform Flow in the Canal	U
	b) To Remove Surplus Water	
	c) To Maintain Constant Velocity of the Flow	
	d) To Help for Proper Hydraulic Jump	
395	What type of escape is preferred these days?	C
575	a) Weir Type Escape	C
	b) Venturi Flume	
	c) Regular Type Escape	
	d) Tail Escape	
396	What is the other name given to weir type escape?	C
570	a) Surplus Water Escape	C
	b) Venturi Flume	
	c) Tail Escape	
	d) Scouring Escape	
397	What is the purpose of the regulator type escape?	а
571	a) To Remove Excess Silt	u
	b) To Maintain Uniform Flow in the Canal	
	c) To Perform Proper Hydraulic Jump	
	d) For Distribution of Discharge for the Canals	
398	Scouring escapes have become obsolete because of?	d
570	a) Piers	u
	b) Weir Walls	
	c) Falls	
	d) Silt Ejectors	
399	The canal water flows freely under gravity in which of the following cross	а
077	drainage works?	u
	a) Aqueduct and Super passage	
	b) Super passage and Syphon	
	c) Canal Syphon and Aqueduct	
	d) Level-crossing and inlets outlets	
400	A canal may be identified as a link canal or irrigation canal by visual inspection	C
	based on the following:	
	a) Link canal is always in trapezoidal cross-section	
	b) Irrigation canal is always lined	

c) Link canal is below the ground surface elevation, while the irrigation canal is	
above the ground surface	
d) Link canal is above the ground surface, while the irrigation canal is below the	
ground surface elevation	

Sr. #	Question				
401	What is surplus in cut and fill method through grid data	D			
	a) it is the difference between volume all cuts and fills				
	b) it is the difference between area all cuts and fills				
	c) it is the difference of all rise and fall based on BS/IS/FS of grid data				
	d) it is the difference of RL of all points with respect to BM				
402	What is surplus in cut and fill method through grid data	D			
	a) it is the difference between volume all cuts and fills				
	b) it is the difference between area all cuts and fills				
	c) it is the difference of all rise and fall based on BS/IS/FS of grid data				
	d) it is the difference of RL of all points with respect to BM				
403	In reiteration method of angle measurement through theodolite	А			
	a) The final reading of the vernier should be same as its initial reading.				
	b) The final reading of the vernier should have 90 degree difference from its				
	initial reading.				
	c) The final reading of the vernier should have 180-degree difference from its				
	initial reading.				
	d) The final reading of the vernier should have 270 degree difference from its				
	initial reading.				
404	Tick the wrong statement	В			
	a) Level Surface is one where water do not move				
	b) Level surface and horizontal surface are always same				
	c) Level surface and horizontal surface are sometimes same				
	d) horizontal surface is tangent to level surface				
405.	Tick the wrong statement	D			
	a) BS is a positive sight				
	b) IS is negative sight				
	c) If instrument is shifted after 5th reading, then there are three IS				
	d) IS can be the last reading				
406.	What is true for contour lines	C			
	a) All points on contour line have same elevation				
	b) Two contour lines may intersect under some special case				
	c) If contour lines are close to each other, it indicates gentle slope				
	d) Closed contour lines with higher elevation towards the center indicate flat				
	surface				
407.	In contour map, gradient is based on	С			
	a) Contour interval and contour level				
	b) Horizontal Equivalent and contour level				
	c) Horizontal Equivalent and contour interval				
400	a) contour level only	•			
408.	1 1ck the wrong statement	А			
	a) KL of Change point cannot be calculated				
	b) FS is equal to KL subtracted from HI				
	c) BM and KL are not the same				
	a) CP nave both FS and BS				

409	Tick the wrong statement	С
	a) All contour lines must close either within the map boundary or outside	
	b) Index contour line are the main contour lines which are thick and	
	elevations are mention on it	
	c) Intermediate contour lines are placed between regular contour lines to	
	visualize small but important forms	
	d) All contour lines have different elevation	
410	Tick the right statement	
	a) if the staff rod is not vertical, then it will cause error in readings	
	b) Cross hair of level is also called stadia hairs	
	c) there will be collimation error if line of sight is horizontal	А
	d) there is no need to check the bubble of auto level after each reading	
411	Rise and fall method based on	В
	a) BS and FS	
	b) IS	
	c) two consecutive readings	
	d) HI	
412.	Contour map provide	В
	a) physical characteristics of an area	
	b) information of altitude of a point with respect to its location	
	c) information regarding point of equal distance	
	d) information regarding size of an object	
413	The number mentioned on contour lines are	В
	a) contour time	
	b) elevation of points on contour line	
	c) contour interval	
	d) Horizontal equivalent	
414.	the difference between level of two consecutive contour is called	C
	a) contour level	
	b) elevation of points on contour line	
	c) contour interval	
415	d) Horizontal equivalent	
415.	The horizontal equivalent is based on	А
	a) scale of the map	
	b) number of contour lines on map	
	d) share of contour	
116	d) Shape of contour Type of amony when line of eight is not normalial is called	D
410	a) parallex error	D
	a) paramax enor	
	c) loop misclosure	
	d) dual error	
/17	The height of a point above datum is called	D
71/	a) Height of instrument	
	b) Back sight	
	c) Fore sight	
	d) Reduced level	
418	In case the line of collimation is not horizontal due to improper adjustment then	А
-10	a) error will be proportional to the distance between the point at which	
	reading was taken from the instrument	
L		1

	b) there is no relationship between error and distance	
	c) there will a fix error to be added in all readings	
	d) it will not cause an error	
419	During leveling operation in a loop of 10 km it was observed that the new height	А
117	of 100 m Benchmark was 99.9 m which statement will be true	
	a) The misclosure is 100 mm whereas the allowable misclosure was 37.9 mm	
	so there is no need of adjustment of error	
	b) The misclosure is 100 mm whereas the allowable misclosure was 37.9 mm	
	so there is a need of adjustment of error there is no need of adjustment of	
	error	
	c) The misclosure is 100 mm whereas the allowable misclosure was 37.9 mm	
	so there is a need of adjustment of error there is a need of adjustment of	
	so there is a need of adjustment of error there is a need of adjustment of	
	d) The missiogure is 100 mm whereas the allowable missiogure was 27.0 mm	
	u) The misclosule is 100 min whereas the anowable misclosule was 57.9 min so there is no need of adjustment of arror there is a need of adjustment of	
	so there is no need of adjustment of error there is a need of adjustment of	
420	the supplementary contour lines are	C
420.	a) the main contour lines which are thick and elevations are montion on it	C
	a) the main contour miles which are thick and elevations are mention on it b) the thinner more common lines between the index lines	
	a) placed between regular contour lines to visualize small but important	
	forms that regular contour lines are unable to show	
	d) there is no such lines	
421	drawing of right angle from a point outside of the line on the line when point is not	C
421	accessible	C
	a) is not possible	
	a) is not possible b) can be estimated	
	c) possible by selecting two points on the line, then drawing two offsets and	
	interaction of offsets is projected as required angle	
	d) possible by selecting four points on the line, then drawing two offsets and	
	interaction of offsets is projected as required angle	
422	when chaining is obstructed but vision is free than	С
722.	a) narallel line cannot be drawn	C
	b) can be estimated	
	c) parallel line can be drawn by taking two offsets of same length from the	
	hase line	
	d) parallel line can be drawn by taking offsets of different length from the	
	hase line	
423	when chaining and vision is obstructed	С
_	a) parallel line cannot be drawn	
	b) can be estimated	
	c) parallel line can be drawn by taking two offsets of same length from the	
	base line and projecting the line after obstacle and taking again two offsets	
	back to the base line	
	d) parallel line can be drawn by taking one offset of same length from the	
	base line and projecting the line after obstacle and taking again one offset	
	back to the base line	
424.	Whole circle bearings and quadrantal bearings have same numeric values when	В
	a) angle is less than 90 degree measured counter clock wise from north	
	b) angle is less than 90 degree measured clock wise from north	
	c) angle is less than c90 degree measured counter clock wise from south	

	d) angle is less than 90 degree measured clock wise from south	
425.	Keeping view, the concept of Chain Traversing, which statement is true	В
	a) this traversing is not possible without angular measuring devices	
	b) It is adopted when area cannot be divided into triangles like lake or	
	standing crops	
	c) it is done by tape only	
	d) it is not suitable for closed traverse	
426	Which statement is true	D
	a) fore bearing and back bearing has 360-degree difference	
	b) using quadrantal bearings, changing the north into south is enough to	
	convert fore bearing into back bearing	
	c) if an angle is greater than 90 than it is considered as exterior angle	
	d) None is true	
427.	Keeping in view the area calculation which statement is true	C
	a) area obtained by mid ordinate method and Simpson rule is same in all	
	cases	
	b) when baseline cuts the boundary line, Trapezoidal rule cannot be used	
	c) when baseline cuts the boundary line, Trapezoidal rule be used by taking	
	length of offset as Zero	
	d) Simpson rule is not suitable for odd number of offsets	
428.	If there are offsets at irregular intervals	D
	a) mid ordinate method is used	
	b) Trapezoidal method is used	
	c) Simpson method is used	
100	d) None of these	
429	Which type of survey is mostly adopted in the field of Agriculture on small scale	C
	a) Geodetic Survey	
	b) ringonometric Survey	
	d) Marine Surveying	
/30	the distance measured by tane is called	•
430	a) Chaining	A
	b) Taning	
	c) Both	
	d) None	
431	if the chain is longer than the actual length then	А
101	a) the length measured will be smaller than the actual length	
	b) the length measured will be greater than the actual length	
	c) the area measured will be greater than the actual area	
	d) the area measured will be equal to the actual area	
432	Subsidiary Stations are	В
	a) Located at the start or end of the boundary	
	b) located to run auxiliary lines for internal detail	
	c) located outside of the area to run tie lines	
	d) same as main station	
433.	Main stations should be located in such a way that	В
	a) many lines are to be drawn for locating internal details	
	b) few lines are to be drawn for locating internal details	
	c) many lines have to draw instead of one single main line	
	d) None of these	

434.	The longest Survey line is called	А
	a) base line	
	b) check line	
	c) tie line	
	d) offset	
435.	Offsets are	С
	a) Perpendicular	
	b) Oblique	
	c) Both	
	d) None	
436	check lines are used	А
	a) as proof lines	
	b) to locate exterior details	
	c) to check accuracy	
	d) as base line	
437.	Gunter's Chain has	D
	a) 66 links	
	b) 33 links	
	c) 100 links of 1 ft long	
	d) 100 links of 0.66 ft long	
438	Engineers Chain is	А
	a) 100 ft in length	
	b) 66 ft in length	
	c) 33 ft in length	
	d) 1000ft in length	
439.	Keeping in view the practical of pacing, which statement is true	В
	a) in 100 ft length, the number of paces of every surveyor are same	
	b) in 100 ft length, the number of paces of every surveyor are not the same	
	c) one pace is of 2.75 ft for every surveyor's irrespective of physic of	
	surveyor	
1.10	d) none is true	
440	Keeping in view the practical of offset, which statement is true	D
	a) perpendicular offsets cannot be drawn in the field	
	b) oblique off set cannot be drawn in field	
	c) length of perpendicular and oblique offset is same	
4.4.1	d) none is true	0
441.	In reconnaissance survey	C
	a) detailed map of an area is prepared	
	b) exact map of the area is prepared	
	d) nona is true	
442	d) none is true	C
442.	A pentagon constructed in the field should	C
	a) have all internal angles as 00 degrees each	
	c) sum of angles should be 540	
	d) sum of angles should be 500	
112	L ocal attraction in the field can be observed when	B
443.	a) back bearing and fore bearing of a line have 180 degree difference	U U
	b) back bearing and fore bearing of a line don't have 180-degree difference	
	c) cannot be assessed in the field	

	d) can be estimated	
444.	In radiation method plane table is placed	А
	a) in the approximate center of the area	
	b) placed at each corner point of the area	
	c) placed at two points in the area	
	d) placed at least at four different points	
445.	In intersection method plane table is placed	С
	a) in the approximate center of the area	
	b) placed at each corner point of the area	
	c) placed at two points in the area	
	d) placed at least at four different points	
446	In traverse method plane table is placed	В
	a) in the approximate center of the area	
	b) placed at each corner point of the area	
	c) placed at two points in the area	
	d) placed at least at four different points	
447.	in compass traversing	В
	a) surveyor's compass and prismatic compass is same in use	
	b) prismatic compass is used for accurate measurement of angles	
	c) Surveyor's compass is used for accurate measurement of angles	
	d) none is true	
448.	Abney Hand level is used for	D
	a) distance measurement	
	b) offset drawing	
	c) measurement of horizontal angles	
	d) measurement of vertical angles	~
449.	In resection Method of plane tabling	С
	a) positions of all points is exactly known	
	b) points are already located on the plan before resection method	
	c) points were first estimated and later are confirmed on the plan	
450	d) detailed map is prepared by estimation	D
450.	Resection Method of plane tabling	D
	a) is same as indiction method	
	a) is used to draw plan directly	
	d) is used to locate the stations	
451	in cross staff survey	D
431	a) readings outside of the rectangle are the distance of offsets from starting	D
	noint to locate the position of offsets	
	b) readings inside of the rectangle are the length of offsets	
	c) triangle represents the corner with offset length of onsets	
	d) readings inside of the rectangle are distances and outsiders are length of	
	offsets	
452	in cross staff survey	В
	a) readings outside of the rectangle are the distance of offsets from starting	
	point to locate the position of offsets	
	b) readings outside of the rectangle are the length of offsets	
	c) triangle represents the corner with offset length as maximum	
	d) it makes no difference of writing the values on left or right side of	
	rectangle on sketch	

453.	in cross staff survey	С
	a) readings outside of the rectangle are the distance of offsets from starting	
	point to locate the position of offsets	
	b) readings inside of the rectangle are the length of offsets	
	c) triangle represents the corner with offset length as Zero	
	d) it makes no difference of writing the values on left or right side of	
	rectangle on sketch	
454.	What is the relationship of the offset with check tie?	С
	a) check ties are always used while locating an object	
	b) check ties are never used while locating an object	
	c) check ties may be used while locating an object depending upon situation	
	d) there is no relationship between these two	
455.	In order to draw a perpendicular from a chain line following method is used	А
	a) 3,4,5 method	
	b) tape swing method	
	c) both	
	d) None	
456	In order to draw a perpendicular from a point on chain line following method is	В
	used	
	a) 3,4,5 method	
	b) tape swing method	
	c) both	
	d) None	
457.	If two ends of chain line may not visible from intermediate point, then the length	С
	of the line	
	a) cannot be measured	
	b) is estimated only	
	c) can be accurately find by developing a right angle triangle	
	d) did not exists	
458.	When chainage is obstructed but vision is free between two points on chain line	А
	then the length of the line between such points can be found by	
	a) by drawing a large right angle triangle	
	b) Estimation	
	c) Guessing	
	d) None	
459.	if there is a small cliff in the way of an established chain line, the length of line	D
	segment across the cliff	
	a) cannot be measured	
	b) can be measured by developing a triangle and using law of sine	
	c) can be measured by developing a triangle and using double angle formula	
1.00	d) can be measured by developing a triangle and using law of cosine	9
460.	which tool is best to measure distance in a windy zone	C
	a) cloth tape	
	b) Fiber tape	
	d) Magazzing Wheel	
4.61	d) Measuring wheel The number of links in Engineeric and Constants Chain	
401	a) are the same	A
	a) are the same b) Guntar's Chain has more links	
	b) Guiner's Chain has more links	
	c) Engineer's Chain has more miks	

	d)	it depends upon the surveyor to adjust the number of links	
462	The rat	io of Hoop stress and axial stress varies for thin walled pressure vessel	А
	a)	2 to 1	
	b)	0 to 1	
	c)	2 to 1.5	
	d)	3 to 2	
463.	The dif	ference between thin walled and hick walled pressure vessel is	D
	a)	the vessels having thickness greater than 0.1 are thick walled pressure	
		vessel	
	b)	the vessels having thickness greater than 0.1m are thick walled pressure	
		vessel	
	c)	the vessels having thickness to diameter ratio greater than 0.1m are thick	
		walled pressure vessel	
	d)	the vessels having thickness to diameter ratio greater than 0.1 are thick	
1.64	** •	walled pressure vessel	9
464.	Using	the concept of thin shell of revolution, which statement is true for radius	C
	usea	redius accepted to avial stress has a constant value	
	a) b)	radius associated to been stress has a constant value	
	(U)	both radius has variable values	
	() d)	None	
465	for the	calculation of stress in thin walled pressure vessel	B
-105		only external pressure is important	D
	b)	only internal pressure is important	
	c)	external and internal both pressure is important	
	d)	there is no role of pressure	
466	Keepin	g in view the torsional loading, tick the false statement	D
	a)	plane segment remain plane after application of load on circular rods	
	b)	maximum shear stress is developed at the surface of the shaft	
	c)	maximum shear strain is developed at the surface of the shaft	
	d)	plane segment remain plane after application of load on square rods	
467.	Keepin	g in view the torsional loading, the polar moment of inertia depends upon	С
	a)	the mass of the shaft	
	b)	the material of the shaft	
	c)	the shape of the shaft	
	<u>d)</u>	torque transmission of the shaft	
468.	The dia	imeter of the shaft is selected on the basis of	D
	a)	allowable shear stress	
	b)	allowable angle of twist	
	() ()	modulus of elasticity	
	u)	of diameter	
/69	the she	ar stress developed in shafts are based on	D
		torque only	D
	b)	size only	
	c)	torque and size both	
	d)	none of these	
470	hollow	shaft will transfer more torque if it is same as solid shaft	D
	a)	Size	
	b)	Weight	

	c)	Length	
	d)	none of these	
471	Simply	supported beam is	D
	a)	having both end fixed	
	b)	both end free	
	c)	one end fix one end free	
	d)	both end roller supported	
472	Point L	oad is one	А
	a)	which act on an area negligible as compare to the total area of object	
	b)	which act on an area 2 percent compare to the total area of object	
	c)	which act on one place	
	d)	which is distributed over an area	
473.	Bendin	g moment is produced	В
	a)	due to external forces only	
	b)	due to external forces and moments	
	c)	due to shape	
	d)	due to bending	
474.	shear fo	prce is	А
	a)	working perpendicular to the beam axis	
	b)	working parallel to the beam axis	
	c)	working perpendicular x axis	
	d)	working parallel to the Y axis	
475.	Distrib	uted load is converted to point load	В
	a)	to maintain real field conditions	
	b)	to make calculation easy	
	c)	to increase the efficiency of the load	
	d)	to draw BM and SF dia	
476.	A bean	n is of 10 m length out of a distributed load of 100 N was spread over 8 m.	А
	The eq	uivalent point load is	
	a)	100 N	
	b)	800 N	
	c)	1000 N	
477	$\frac{(1)}{(1)}$	8000 N	D
477.	wnich	statement for Neutral Axis is not true	D
	a)	an axis passing through the geometric center of the body	
	(U)	an axis that divide compressional and tensional ragion	
	() d)	an axis mat divide compressional and tensional region	
178	U) Maxim	um bending moment is	C
470	wianiii a)	always at the center of the beam	C
	a) b)	always at the end of the beam	
	c)	depends upon loading	
	(9 d)	depends upon shape only	
479	In case	of T beam, the stress distribution is based on	В
	a)	distance from mid-point of the beam	2
	b)	distance from the geometrical center of the beam	
	c)	material of the beam	
	d)	none of these	
480	Maxim	um bending moment is	А
	a)	at the point where shear force is zero	

	b) at the point where shear force is maximum	
	c) at the center of the beam	
	d) at the end of the simple supported beam	
481	For distributed load	D
	a) both shear force and bending moment diagram are drawn with curve lines	
	b) both shear force and bending moment diagram are drawn with straight	
	lines	
	c) shear force diagram is drawn with curve lines	
	d) Bending moment diagram is drawn with curve lines	
482	If there are point and distributed load acting together on a beam, then	D
	a) both shear force and bending moment diagram are drawn with curve lines	
	b) both shear force and bending moment diagram are drawn with straight	
	lines	
	c) shear force diagram is drawn with curve lines	
	d) Bending moment diagram is drawn with curve lines	
483.	If there are point and distributed load acting together on a beam, then	С
	a) the shear force diagram will have inclined lines only	
	b) the shear force diagram will have horizontal lines only	
	c) the shear force diagram will have inclined lines with a sudden decline as	
	vertical line at the point where point load is acting	
404	d) none of the above	D
484.	Bending moment and snear force diagram depends upon	D
	a) the material of the beam	
	b) the shape of the beam only	
	d) acting forces and end supports types	
/85	u) acting forces and end supports types	B
405	a) the magnitude of strain	D
	b) is processed to get the magnitude of strain	
	c) deformation produced	
	d) magnitude of the force	
486	Spring torsion testing machine is used to	D
	a) measure the deformation in spring at a given torque	
	b) measure the torque produced in the spring at different speeds	
	c) measure the deformation in spring at a speed	
	d) measure the torque produced in the spring at different angles	
487.	In torsional testing machine of shafts	С
	a) load can be changed	
	b) the torque can be changed	
	c) angle of twist can be changed	
	d) none of these	
488.	Which thing decided the category of column as short, intermediate or long	D
	a) length of column	
	b) diameter of column	
	c) buckling load	
400	d) sienderness ratio	D
489.	the relationship between equivalent length and actual length of the column is	D
	a) both are always same b) equivalent longth is always greater then extend long th	
	b) equivalent length is always greater than actual length	
	c) equivalent length is always smaller than actual length	

	d) depends upon the end connections	
490	the relationship between maximum allowable load and Euler buckling load for	В
	column is	
	a) Both are same	
	b) Euler Buckling load is greater than maximum allowable load	
	c) Euler Buckling load is smaller than maximum allowable load	
	d) depends upon the situation	
491	the machine used to draw stress strain relationship is called	А
	a) Universal Testing Machine	
	b) Torsional Testing Machine	
	c) Charpy Impact tester	
	d) Hardness testing Machine	
492	Cement briquette testing machine apply	А
	a) compressional load	
	b) tensional load	
	c) twisted load	
	d) perpendicular load	
493.	While calculating the deformation under axial loading; which parameter will be	D
	changed if the shape of the object (machine element) under axial loading changed	
	a) Load	
	b) Modulus of elasticity	
	c) Length	
	d) Cross sectional area	
494.	While calculating the deformation under axial loading, which parameter will be	В
	changed if the material of the object (machine element) under axial loading	
	changed	
	a) Load	
	b) Modulus of elasticity	
	c) Length	
	d) Cross sectional area	
495.	What would be factor of safety if stress developed in a machine element under	А
	axial loading is 80 MPa if the element is made of steel having allowable axial	
	stress is 200 MPa	
	a) 2.5	
	b) 0.4	
	c) 16	
10.6	d) 4	5
496.	How many types of stress are there in thin walled cylindrical shape pressure	D
	vessel?	
	a) I wo types; normal and snear	
	b) Two types; axial and meridional	
	c) I wo types; noop and tangential	
407	u) I wo types; axial and noop stress	•
497.	in parabolic snape pressure vessel, the radius associated with stresses are	A
	a) runction of equation generating parabola and point at which stress are to	
	b) Exaction of equation concreting perchalo extra	
	b) Function of equation generating parabola only	
	d) Function of magnitude of the stresses	
400	Con a thin welled pressure vessel ration of this was to be direction	C
498	FOR a minimum varied pressure vessel ration of unickness to radius 1s	

	a)	equal to 0.1	
	b)	greater than 0.1	
	c)	less than 0.1	
	d)	less than or equal to 0.1	
499.	Why so	juare shafts are not in practice?	С
	a)	It is difficult to construct	
	b)	It will waste the material more as compared to circular shaft	
	c)	Plane segments are not plane after twisting	
	d)	The edges can damage the other part	
500	During	torsional loading in shafts, at what point the shear stress is maximum	D
	a)	Shear stress is not present in this case	
	b)	It remains constant	
	c)	At the center of the shaft	
	d)	At the surface of the shaft	
501	Which	assumption is to prove the torsional formula?	А
	a)	Tan of angle is equal to the angle in radians as the angles are so small	
	b)	Tan of angle is equal to the angle in degree as the angles are so small	
	c)	Sin of angle is equal to the angle in radians as the angles are so small	
	d)	sin of angle is equal to the angle in degrees as the angles are so small	
502.	Hollow	shaft transfers more power than solid shaft only if	С
	a)	the size and material of both shafts will be the same	
	b)	the weight and size of both shafts will be the same	
	c)	the weight and material of both shafts will be the same	
	d)	the material of both shafts will be the same	
503.	the size	e of a steel shaft having 2m length designed to transmit 4000 Nm torque will	C
	depend	upon	
	a)	Angle of twist and axial stress	
	b)	Maximum allowable shearing stress and radius of the shaft	
	c)	Angle of twist and Maximum allowable shearing stress	
504	<u>d)</u>	Axial strength of the material and radius of the shaft	0
504.	The siz	e of hollow and solid shaft of same weight and length will be	C
	a) b)	Salid will be arrestor in size as compared to bellow sheft	
	(U)	Solid will be greater in size as compared to solid shaft	
	() d)	Not enough information to make such conclusion	
505	Why o	uniformly distributed load is replaced with a point load while solving	Δ
505	numeri	cal problems	A
	numen a)	To make the calculation simple	
	a) b)	There is no uniformly distributed load in rea life problems	
	c)	It is not replaced	
	(9 d)	Uniformly distributed load has more weight but less effect but point load	
	u)	has more effect	
506	While of	leveloping the free body diagram. A fixed end is replaced with	D
	a)	A vertical reaction	
	b)	A vertical and a couple	
	c)	Vertical and horizontal reaction	
	d)	Vertical and horizontal reaction with a couple	
507	For a s	simply supported beam AB, if a point load P is acting acentric near to B	В
	support	then	
	a)	Reaction at A will be higher	

	b) Reaction at B will be higher	
	c) Moment at A will be higher	
	d) Moment at B will be higher	
508	If a uniformly distributed load is acting on a simply supported beam AB then	С
	a) Reaction at A will be higher	
	b) Reaction at B will be higher	
	c) Both reactions will be equal	
	d) Cannot be judged with the given data	
509.	If the end moment of a loaded beam having two supports only is zero, then it is due	В
	to	
	a) It is due to load	
	b) It is due to support type	
	c) It cannot be zero	
	d) There is some calculation error	
510	If a uniformly distributed load of 50 N/ft is acting on 2 m length, its equivalent	C
	point load will be	
	a) 100 N	
	b) 25 N	
	c) 328 N	
	d) 0 N	
511.	If a point load P is acting on simply supported beam AB then	А
	a) The shear force diagram will cross the zero-shear force line at the point	
	where load is acting	
	b) The shear force diagram will cross the zero-shear force line at mid span	
	c) The shear force diagram will not cross the zero-shear force line	
	d) There is no relationship between load and shear force diagram	
512	If a point load P is acting on simply supported beam AB then	А
	a) The bending moment will be maximum at the point where load is acting	
	b) The bending moment will be maximum at the point where load is acting	
	and the diagram will continue at its maximum value till the end support	
	comes	
	c) The bending moment will be maximum at mid span	
512	d) There is no relationship between load and bending moment diagram	C
513	If the point load acting at mid span is replaced with uniformly distributed load	C
	The choor force diagram will not chonge	
	a) The Shear force diagram will also as the chara from linear to averilinear	
	b) The sudden decrease in shear force diagram at mid snen will be shenged	
	from gradually decreasing trand forming a cloping line which will grade	
	zero shear line at midspan	
	d) The sudden decrease in shear force diagram at mid span will be changed	
	from gradually decreasing trend forming a sloping line, which will not	
	cross zero shear line	
514	If the point load acting at mid span is replaced with uniformly distributed load	B
514	throughout the span on a simply support beam AB then	Ъ
	a) The bending moment diagram will not change	
	b) The diagram will change the shape from linear to curvilinear	
	c) The point of maximum bending will be shifted	
	d) It cannot be assessed from the given data	
515	For a simply supported beam AB it is observed that	А

	a)	The shear force diagram will cross the zero shear force line at one point	
		which will have maximum bending moment	
	b)	The shear force diagram will cross the zero shear force line at one point	
	0)	but it will not the point with maximum bending moment	
	c)	The shear force diagram will cross the zero shear force line at many points	
	() d)	It cannot be assessed from the given data	
516	For Ne	utral axis it is observed that	А
510	1011(e a)	There is compression force above the axis and tensions forces below the	
	u)	avis	
	b)	There is tension force above the axis and compression forces below the	
	0)	avis	
	c)	There are only tension forces on both sides of axis	
	() d)	There are only compression forces on both sides of axis	
517	The be	havior of forces either in compression or in tension from neutral axis is	B
517		Shows a decreasing trend as moves away from neutral axis	Б
	a) b)	Shows a decreasing trend as moves away from neutral axis	
	(U)	Compression forces shows increasing trend and tension forces shows	
	()	decreasing trend	
	(h	Compression former shows decreasing trend and tension former shows	
	u)	compression forces shows decreasing trend and tension forces shows	
510	The let	increasing tiend	C
518.		Length of hear	C
	a) h)	Length of beam	
	D)	Loading criteria of beam	
	(C)	Snape of beam	
510	U) The me	End support of the beam	C
519	The ma	At the surface and mid area of hear	C
	a)	At the senter of error section and mid span of hear	
	D)	At the center of cross section and mid span of beam	
	(C)	At the senter a point in the beam with maximum bending moment	
520	d) Earla	At the center a point in the beam with maximum bending moment	
520.	For des	Signing of beam, that orientation of snape of beam is selected for which	А
	a)	Moment of inertia is maximum	
	D)	Moment of inertia is minimum	
	C)	A second se	
501	()	Any orientation is suitable	
521	when	parallel axis theorem is applied for the calculation of moment of inertia;	А
	a)	in case of 1 beams	
	D)	in case of rectangular beams	
	c)	in case of circular beams	
500		in case of square beams	
522.	Changi	ng the cross section (shape) of a loaded beam will	А
	a)	change the flexural stress	
	b)	change the bending moment	
	c)	change the shear force diagram	
500	<u>d)</u>	nave no effect	
523.	tor circ	cular beams Ixx and Iyy is	А
	a)	Same	
	b)	Ixx is greater than Iyy	
	c)	Ixx is smaller than lyy	
	(d)	Cannot be assessed without dimension	

524.	The bending of long columns is called	С
	a) Moment of inertia	
	b) Slenderness ratio	
	c) Buckling	
	d) Crashing	
525.	For designing of columns, that orientation of shape of beam is selected for which	В
	a) Moment of inertia is maximum	
	b) Moment of inertia is minimum	
	c) No relation with moment of inertia	
	d) Any orientation is suitable	
526	In Euler's formula L is	В
	a) Length of column independent of end types	
	b) Equivalent length of column which depends upon end types	
	c) It is load	
	d) It is moment of inertia	
527.	Short, intermediate and long columns are differentiated on	А
	a) Slenderness ratio	
	b) Length of the column	
	c) Cross sectional area of the column	
	d) Load on the columns	
528	The structural member which is called a compression member is	В
	a) Beam	
	b) Column	
	c) Shaft	
	d) Pressure vessel	
529	Failure in short columns is known as	В
	a) Buckling	
	b) Crushing	
	c) Tilting	
	d) Bending	
530	The moment of inertia of solid and hollow cross section is	C
	a) Same	
	b) Hollow has higher values	
	c) Solid has higher values	
	d) Cannot be assessed	
531.	Section modulus is	C
	a) Type of modulus of elasticity	
	b) Relationship between stress and strain	
	c) Shape factor	
	d) Power factor	-
532.	The x component of a force making an angle θ with Y axis is equal to	В
	a) $F \cos \theta$	
	b) $F \sin \theta$	
	c) F tan θ	
500	d) None	5
533.	At what angles under Centric Loading Normal and Shear Stresses are equal in	В
	magnitude	
	a) 45,90	
	b) 45, 90 and 135	
1	c) 0,90	

	d) 0, 190	
534.	In case of arbitrary loading, stresses are converted into force by multiplying with	D
	a) the given area	
	b) cos of the area	
	c) sin of the area	
	d) with the component of the area at which stress is acting	
535.	while finding the stresses on a given plan by converting the stresses into force, the	D
	direction of required normal and shear stresses are assumed. In this case the answer	
	a) should be positive	
	b) should be negative	
	c) there is no role of sign of the answer	
	d) with negative sign represent that the assume direction was wrong	
536	while finding the stresses on a given plan by using formula approach, sign of shear	В
	stress	
	a) depends upon its upward or downward direction	
	b) depends upon its upward or downward direction as well as on the direction	
	of normal stress acting on the same plan	
	c) is positive in upward direction when normal stress (acting on the same	
	plane) is in compression	
	a) is positive in upward direction when normal stress (acting on the same	
527	On orthogonal planes	
557.	a) short strasses have some magnitude	А
	a) shear stresses have same direction	
	b) shear stresses have same unection	
	d) None of above	
538	Max in plane shear stress and max shear stress	B
550	a) are always the same	Ъ
	b) in some cases they are same and in some cases they are not	
	c) has no relationship with principal stresses	
	d) None	
539	how many stresses are shown to draw max shear stress when it is not equal to max	А
	in plane shear stress	
	a) 11	
	b) 3	
	c) 7	
	d) 9	
540	Which statement is true	D
	a) strain and deformation are the same	
	b) strain and stress are same	
	c) strain has units	
	d) strain has no unit	
541	minimum number of strain gages required for plane strain analysis are	А
	a) 3	
	b) 5	
	c) 7	
	d) 9	~
542.	When a field is called level it means	C
	a) all the points in the field are at the same distance from auto level	
	b) all the points will have same height of instrument	

	c) all the points will have same staff reading if there is no change point	
	d) all the points have same staff readings even if there are change points	
543.	The field readings are noted as 2, 2.1, 2.2, 1.3, 1.5, 1.6 and 1.8. of the instrument is	С
	shifted after 3rd reading then the first intermediate sight after change point will be	
	a) 1.3	
	b) 2.2	
	c) 1.5	
	d) 1.8	
544.	Horizontal equivalent in contour map	С
	a) is constant all over the map	
	b) is a variable quantity depending upon the contour interval	
	c) is a variable quantity depending upon the contour line	
	d) is a variable quantity depending upon the contour level	
545.	the supplementary contour lines are	С
	a) the main contour lines which are thick and elevations are mention on it	
	b) the thinner, more common, lines between the index lines	
	c) placed between regular contour lines to visualize small but important	
	forms that regular contour lines are unable to show	
	d) there are no such lines	
546.	In case of even number of areas. the prismoidal formula	D
	a) is not applicable	
	b) can be applied to odd number of areas only	
	c) can be applied to odd number of areas and area of rest of sections were	
	calculated by trapezoidal formula	
	d) is applied to even sections and left over volume is calculated by	
	trapezoidal formula	
547.	When prismoidal correction is used for volumetric calculation	D
	a) in all volumetric calculations	
	b) when we have two level surface	
	c) when area was by trapezoidal formula	
	d) when volume was calculated by trapezoidal formula	
548.	Which type of theodolite is now absolute	В
	a) transit type	
	b) non transit type	
	c) Vernier type	
5.40	d) micrometer type	D
549.	the axis in which a telescope of the theodonte can be rotated in norizontal	Б
	plane	
	a) nonzontan b) vertical	
	c) truppion	
	d) parallel	
550	foundation level depends upon	C
550.	a) ground level	
	h) soil type	
	c) required slope	
		1

	d) cost of project	
551	We need to fill if	В
	a) ground level is greater than foundation level	
	b) ground level is smaller than foundation level	
	c) ground level is same as foundation level	
	d) when the slope is low	
552	if the ground has uniform slope then which formula is used to calculate the	В
	cross sectional area	
	a) level section	
	b) two level section	
	c) three level section	
	d) four level section	
553.	the contour lines	D
	a) may or may not close	
	b) never close	
	c) must close within the map	
	d) must close within or outside of the map	
554.	Type of error when line of sight is not parallel is called	В
	a) parallax error	
	b) collimation error	
	c) loop misclosure	
	d) dual error	D
222	The height of a point above datum is called	D
	a) Height of instrument	
	b) Back signt	
	c) Fore signt	
556	The point which have back sight as well as fore sight data is called	C
550	a) Bench Mark	C
	a) Denon Mark b) Temporary bench mark	
	c) Change point	
	d) there is no such point in leveling	
557	in case the line of collimation is not horizontal due to improper adjustment	А
007	then	
	a) error will be proportional to the distance between the point at which	
	reading was taken from the instrument	
	b) there is no relationship between error and distance	
	c) there will a fix error to be added in all readings	
	d) it will not cause an error	
558	What is the loop misclosure if the length of the loop is 5000 ft	А
	a) 14.8 mm	
	b) 26.8 mm	
	c) 468 mm	
	d) 468 in	
559	During leveling operation in a loop, it was observed that the new height of 100	В
	m Benchmark was 99.87 m. the apparatus was shifted five times. What would	
	be the adjustment for 3rd setup.	
	a) 78 mm	
	b) -78 mm	

	c)	130 mm	
	d)	-130 mm	
560	During	leveling operation in a loop of 10 km, it was observed that the new	А
	height	of 100 m Benchmark was 99.9 m. which statement will be true	
	a)	The misclosure is 100 mm whereas the allowable misclosure was 37.9	
		mm so there is no need of adjustment of error	
	b)	The misclosure is 100 mm whereas the allowable misclosure was 37.9	
		mm so there is a need of adjustment of error there is no need of	
		adjustment of error	
	c)	The misclosure is 100 mm whereas the allowable misclosure was 37.9	
		mm so there is a need of adjustment of error there is a need of	
		adjustment of error	
	d)	The misclosure is 100 mm whereas the allowable misclosure was 37.9	
		mm so there is no need of adjustment of error there is a need of	
		adjustment of error	
561.	the height	ght of contour line from some reference of MSL is called	А
	a)	Contour level	
	b)	contour interval	
	c)	contour extension	
562	() the different	base value	D
502.		Contour level	D
	a)	contour interval	
	(U)	contour extension	
	() ()	base value	
563	can cor	ntour lines intersect?	С
505	a)	No	C
	b)	ves in case of cliff	
	c)	yes in case of overhanging vertical cliff	
	d)	yes in case of saddle	
564	if volu	me calculated by trapezoidal formula is 2578 cubic meter and by	d
	prismo	idal formula is 2600 cubic meter then prsimodial correction is	
	a)	22 cubic meter	
	b)	- 22 cubic meter	
	c)	no need to calculate prismodial correction	
	d)	the data set given has some error	
565.	the diff	erence between theodolite and auto level is	C
	a)	both instruments are same just theodolite is more accurate	
	b)	both instruments are same just theodolite have higher visibility range	
	c)	theodolite can measure horizontal as well as vertical angles whereas	
	.1	auto level can only measure horizontal angles	
	d)	uneodonte ca measure nonzontal as well as vertical angles whereas	
566	The or	auto level can only measure ventical angles	D
500	denth a	of cutting or filling at 220 m if the formation level is 0.6 m above the	U
	ground	level at starting point with uniform gradient of 1 in 50	
	510unu a)	1.2 m cut	
	b)	1.2 m fill	
	c)	neither cut nor fill	
	d)	data is not complete	

567.	Differential leveling	А
	a) is done to transfer bench mark	
	b) is used for contouring	
	c) is used for finding route details	
	d) for plane tabling	
568	In Profile leveling is used for	В
	a) Intermediate sights is always taken at fixed distance	
	b) Intermediate sights is taken depending upon the track conditions	
	c) only backsight and foresight is taken	
	d) there is no foresight involved	
569.	plane table is used when contouring is done by	В
	a) direct method	
	b) radial line method	
	c) grid method	
	d) GPS	
570	the staff rods which is used now a days are made of	В
	a) iron	
	b) aluminum	
	c) stainless steel	
	d) plastic	
571.	while drawing the profile finished level	D
	a) is always above the ground level	
	b) is always below the ground level	
	c) is always below the formation level	
	d) is always above the formation level	-
572	the basic concept behind the stadia method used for distance measurement is	В
	that when staff rod is moved away from autolevel	
	a) difference in readings at stadia hairs will decrease linearly	
	b) difference in readings at stadia hairs will increase linearly	
	c) difference in readings at stadia hairs will becrease quadratically	
572	in adjusting the loop micelesure	D
575	a) shance point is not important	D
	a) change point is not important b) total number of change points are important	
	c) order of change point is important	
	d) total number and order of change point are important	
574	In direct method of contouring	C
574	a) first BS is taken to find HI and then readings are taken at random	C
	noints for IS	
	b) first BS is taken to find HI and then readings are taken at	
	predetermined points for IS	
	c) first BS is taken to find HI and then readings are taken at such points	
	with required IS	
	d) first BS is taken to find HI and then readings are taken at equal	
	distances for IS	
575.	In grid method of contouring	D
	a) it is assumed that there is a uniform slope between the corners	
	depending upon the RL of corner points	
	b) it is assumed that there is a uniform slope between the corners	
	depending upon the IS/FS of corner points	

c) it is assumed that there is a uniform slope between the corners
depending upon the distance between corner points
d) it is assumed that there is a uniform slope between the corners
depending upon the RL and distance between the corner points

Sr. #	MCQS	Answer	
576	In USLE, the input parameter is		
	A. soil erodibility	В	
	B. rainfall erosivity index		
	C. topographic factors		
	D. slope steepness factors		
577.	According to Darcy's Law, the flow rate through a porous media is inversely		
	proportional to		
	A. head loss		
	B. cross-sectional area		
	C. length of the flow path		
	D. none of these		
578.	The combination of soil-water zone, intermediate vadose zone and capillary zone is		
	called		
	A. zone of aeration	А	
	B. zone of saturation		
	C. root zone		
	D. none of these		
579.	Leaching is a process by which		
	A. water is excessively pumped from a waterlogged area	D	
	B. excess salt in the soil is pushed down by standing water above the soil	В	
	C. Improving the soil structure and texture by adding the soluble chemicals		
500	D. sodium ions are removed from irrigation water		
580.	Soil moisture characteristic curve gives relationship between		
	A. Soil tension and moisture content	А	
	B. Soil salinity and moisture content		
	C. Soil texture and moisture content		
501	D. Soll water and soll moisture		
581	Land is said to waterlogged when	C	
	A. gravity dramage is ceased D DWD is reached	C	
	D. I WI IS reaction C solinity of soil increases		
	D all of above		
582	Mole drains are useful in equalizing water level between ditches for		
502.	A drainage		
	B sub-irrigation	C	
	C both drainage and sub-irrigation	C	
	D. none of them		
583	Water logging in irrigated areas is due to		
2 0 0	A. seepage from unlined canals and watercourses		
	B. shift from protective to intensive irrigation	D	
	C. inadequate drainage		
	D. all of above		
584	Point out the incorrect statement, out of the following		

	A.	salinity is caused by water-logging	
	B.	water-logging is not caused by salinity	С
	C.	salinity subsides, when once the water-logging is removed	
	D.	none of above	
585	The fas	stest method of drainage to lower WT to greater depths is	
	A.	Surface drainage	
	В.	subsurface drainage	С
	C.	vertical drainage	
	D.	none of above	
586	The typ	be of drainage that may dispose-off excess runoff and -lower WT is	
	A.	Surface drainage	А
	В.	subsurface drainage	
	C.	vertical drainage	
	D.	none of above	
587.	What is	s the cross sectional shape of shallow surface drains?	D
	A.	Triangular Shape	
	В.	Circular Shape	
	C.	Rectangular Shape	
	D.	Trapezoidal Shape	
588	Which	type of open drains would be fully operative only in rainy season?	
	A.	Shallow Surface Drains	В
	В.	Deep Surface Drains	
	C.	French Drain	
	D.	Drains	
589	Due to	inadequate drainage which factor causes waterlogging with constant	
	percola	tion?	
	А.	Over and Intensive Irrigation	С
	В.	Impervious Obstruction	
	C.	Inadequate Surface Drainage	
	D.	Flat Topography	
590.	Which	type of soils is benefited by using tile drainage?	
	А.	Dry Soils	
	B.	Black Soils	C
	C.	Wet Soils	
	D.	Red Soils	
591	In what	t chemical ways does tile drainage help in plant growth?	
	A.	Decreases Alkalinity of Soils	
	В.	Increases salinity of Soils	D
	C.	Increases Nitrogen	
	D.	Reduces and Removes Toxic Substances	
592.	Under	what strata the tile drainage should not be placed?	
	A.	In Shallow Depths	
	В.	More Pervious Strata	C
	C.	Less Pervious Strata	
	D.	Pervious Strata	
593.	What s	tructure is surrounded around the tile drains when used in less pervious	
	strata?		A
	A.	Envelope Filters	
	В.	French Drains	
	С.	Beehive Grate	

594.	The minimum furrow grade to assure surface drainage is:			
	A. 0.09%	D		
	B. 0.02%			
	C. 0.07%			
	D. 0.05%			
595.	In an irrigation project, in a certain year, 60% and 46% of the cultivable command			
	area in Kharif and Rabi respectively, remained without water and rest of the area			
	got irrigation water. The intensity of irrigation in that year for the project was			
	A. 126 %	D		
	B. 80 %			
	C. 124 %			
	D. 94 %			
596.	Select the incorrect statement ?			
	A. Intensive irrigation should be avoided in areas susceptible to water logging			
	B. Extensive irrigation should be adopted in areas susceptible to water			
	logging	С		
	C. Lift irrigation increases water logging			
	D. all of the above			
597.	The drainage water intercepting the canal can be disposed of by passing the canal			
	below the drainage in?			
	A. aqueduct and syphon aqueduct			
	B. aqueduct and super passage	С		
	C. super passage and canal syphon			
	D. level crossing			
598.	What is the size of the tile at an outlet of a 12 hectare drainage system, if the			
	Drainage Coefficient is 2 cm and the tile grade is 0.5%. Assume the rugosity			
	coefficient as 0.015 for the tile drain material.	В		
	A. 10 cm			
	B. 20 cm			
	C. 15 cm			
	D. 25 cm			
599.	Which type of alternate layouts system for tile drainage has two mains?			
	A. Grid Iron System			
	B. Natural System	С		
	C. Double main System			
	D. Herring Bone System			
600.	How many cubic metres of water will be removed for this particular period of a			
	system designed to use a Drainage Coefficient of 1.5 cm draining 20 hectares for a			
	capacity of 5 days?	C		
	A. 10000 m ³			
	B. 25000 m ³			
	C. 15000 m^3			
	D. 20000 m ³			
601.	Which one of the following is not a remedial measure for waterlogging?	D		
	A. Good drainage for irrigated land			
	B. Conjunctive use of water in the basin			
	C. The lining of canals and watercourses			
	D. Contour bunding			
602.	Which factor depends upon the depressions of the terrain and causes water	А		
	logging?			
	A. Irregular Topography			
------	--	---	--	--
	B. Impervious Obstruction			
	C. Inadequate Surface Drainage			
	D. Excessive Rains			
603)3 Swampy land is			
	A. ill-aerated land			
	B. The land where cultivation operations are impossible			
	C. Land having deposition of alkali salts in the root zone of the crops			
	D. Saline land			
604	4 What factor creates temporary and continuous waterlogging?			
	A. Submergence due to Floods			
	B. Flat Topography			
	C. Impervious Obstruction			
	D. Excessive Rains			
605.	What is the area drained by a single river system called?	С		
	A. Watershed			
	B. basin			
	C. Drainage basin			
	D. Drainage watershed			
606	Which one of the main drainage basins lies in Asia.	Α		
	A. The Indus Basin			
	B. Murray-Darling Basin			
	C. Danube River Basin			
	D. Canadian River Basin			
607.	Darcy's law is applicable when Reynolds number is:	B		
	A. Equal to 1			
	B. Less than 1			
	C. More than 1			
	D. Less than 2	-		
608.	8 The percentage of total quantity of water in the world that is saline is:			
	A. 6/			
	B. 75			
	C. 88			
(00	D. 9/			
609.	Interception losses includes:	A		
	A. Evaporation loss only D. Evaporation through flow and stream			
	 Evaporation unough now and stream C Evaporation and transmission losses 			
	C. Evaporation and transpiration losses			
610	D. Stream now only	D		
010	A geological formation which is essentially impermeable for now of water even though it may contain water in its percessis called :	D		
	A Aquifuge			
	B Aquiclude			
	C Aquitard			
	D Aquifer			
611	Flow mass curve is an integral curve of:	D		
011	A Flow-duration curve			
	B S-curve			
	C. Hyetograph			
	D. Hydrograph			
L		1		

612	2 Soil erosion is a:		
	A. Fluvial work		
	B. Geomorphologic work		
	C. Both (a) and (b)		
	D. None of these		
613	Erosivity is the:		
	A. Climatic aggressiveness		
	B. Soil aggressiveness		
	C. Both (a) and (b)		
	D. None of these		
614	Particles less than 0.1 mm diameter is moved by the action of:	А	
	A. Suspension		
	B Saltation		
	C Surface creep		
	D None of these		
615	Critical diameter of clod takes place in the wind erosion is:	B	
015	$\Delta = 0.50 \text{ mm}$	Б	
	$\mathbf{B} = 0.84 \text{ mm}$		
	C = 0.10 mm		
	D 100 mm		
616	Which would be more effective for erosion:	٨	
010	A Combination of crops, trees and livestock	A	
	A. Combination of crops, needs and investock B. Combination of crop and livestock		
	D. Combination of trace and livestock		
	C. Combination of trees and investock		
(17	D. None of these	0	
617.	When the soil moisture and rainfall are inadequate during the growing season to	C	
	support healthy crop growth to maturity is called:		
	A. Metrological drought		
	B. Hydrological drought		
	C. Agricultural drought		
(10	D. None of these	G	
618	8 The movement of water in seepage is:		
	A. Downward		
	B. Lateral		
	C. Both (a) and (b)		
	D. None of these		
619	The quantity of water going through various individual path of hydrological cycle	D	
	can be described by:		
	A. Continuity equation		
	B. Water budget equation		
	C. Hydrologic equation		
	D. All are correct		
620	The quantity of water going through various individual path of hydrological cycle	C	
	can be described by:		
	A. Continuity equation		
	B. Water budget equation		
	C. Hydrologic equation		
	D. All are correct		
621	To convert the point of rainfall value at various stations into an average value over	D	
	a catchment area is possible by:		

	A. Arithmetical-mean method		
	B. Thiessen-polygon methon		
	C. Isohyetal method		
	D. All are correct		
622	Province of the p-H value of water should be B		
	A. between 3 and 6		
	B. between 6 and 8.5		
	C. between 8.5 and 11		
	D. more than 11		
623.	Settlement of an embankment depends on:	А	
	A. Void ratio		
	B. Density of soil		
	C. Water viscosity		
	D. All are correct		
624.	A situation where more than 25% decrease in precipitation from the normal over	В	
	an area is called:		
	A. Hydrological drought		
	B. Meteorological drought		
	C. Agricultural drought		
	D. None of these		
625.	Fine clay particles have low detachability but:	А	
	A. High transportability		
	B. High dispersive		
	C. High soil loss		
	D. None of these	_	
626.	Wind erosion is more in:	В	
	A. Cohesive soils		
	B. Non-cohesive soils		
	C. Rocky soils		
(07	D. None of these	•	
627.	The moisture content of the soil, after free drainage has removed most of the	A	
	gravity water, is known as		
	A. field capacity		
	D. Saturation capacity $C_{\rm relation}$ within a constitution of the set o		
	D. available moisture		
628	The standard height of a standard rain gauge is	C	
020	$\Delta = 10 \text{ cm}$	C	
	B 20 cm		
	C = 30 cm		
	D = 40 cm		
629	According to Fanning's formula, the flood discharge (O) in currect is given by	С	
022	A. $Q = CA2/3$		
	B = CA3/4		
	C. Q = CA5/6		
	D. $O = CA7/8$		
630	Which of the following is the correct sequence of the parts of a canal system?	В	
	A. Head works, distributary, branch canals and minor		
	B. Head works, main canal, branch canal, distributary and minor.		
	C. Head works, main canal, branch canal, minor and distributary.		

	D. none of the above				
631	The saturation gradient in an ordinary loam soil is				
	A. 1:1				
	B. 2:1				
	C. 3:1				
	D. 4:1				
632	2 Which of the following statements is wrong?				
	A. Seepage drains reduce the chances of water logging.				
	B. The water table generally follows the ground surface above it with a few				
	exceptions.				
	C. At the water table, the hydrostatic pressure is zero.				
	D. Water logging makes the land more productive.				
633.	The floor of the aqueduct is subjected to uplift pressure due to	C			
	A. seepage of water from the canal to the drainage				
	B. sub-soil water table in the drainage bed				
	C. both (a) and (b)				
	D. none of the above				
634	The application of Darcy's Law is limited by the condition that flow through the	A			
	porous medium must be:				
	A. Laminar				
	B. Turbulent				
	C. Intermediate				
	D. None of these				
635.	The lateral seepage of water in a relatively pervious soil above a less pervious	C			
	layer is:				
	A. Percolation				
	B. Infiltration				
	C. Interflow				
(2)	D. Seepage	D			
636	Of the following, which is the form of precipitation?	D			
	A. Kainiali D. Snowfall				
	B. Snowiali				
	C. Hall D. All are connect				
627	D. All ale collect	C			
037.	A Bund's height	C			
	A. Durid's height B. Angle of repose off ill material				
	C. Both (a) and (b)				
	D None of these				
638	The rate of evaporation is dependent on:	D			
050	A Vapour pressure at the water surface and air above	D			
	B Air and water temperature and wind speed				
	C. Atmospheric pressure and quality of water				
	D. All are correct				
639	Lysimeter is used to measure:	В			
	A. Evaporation				
	B. Evapotranspiration				
	C. Atmospheric pressure				
	D. None of these				
640	Direct runoff is made up of:	В			

	A. Overland flow		
	B. Surface runoff and prompt inter flow		
	C. Surface runoff and infiltration		
	D. Rainfall and evapotranspiration		
641	Factor which affects the flood hydrograph, is: D		
	A. Shape of basin		
	B. Size of basin		
	C. Slope of basin		
	D. All are correct		
642.	The rising limb of a hydrograph is also known as:		
	A. S-curve		
	B. Concentration curve		
	C. Flow mass curve		
	D. Double mass		
643.	The hydraulic flood routing method used is:	D	
	A. Equation of motion		
	B. Energy equation		
	C. Continuity equation		
	D. Both (b) & (c)		
644.	Detachability of soil particle increases with:	А	
	A. Decreasing median grain size		
	B. Increasing medium grain size		
	C. Both (a) and (b)		
	D. None of these		
645.	V-shaped gullies are developed when:	А	
	A. velocity is high but runoff volume per unit time is less		
	B. velocity is less but runoff volume is more		
	C. Flow velocity is less		
	D. Runoff volume is more		
646.	6 Which one of the main drainage basins lies in Asia		
	A. The Indus Basin		
	B. Murray-Darling Basin		
	C. <u>Danube River</u> Basin		
	D. <u>Canadian River</u> Basin		
647.	The area of land draining into a watercourse at a given location is known as:	D	
	A. The Catchments area		
	B. Drainage area		
	C. Drainage basin		
C 10	D. All are correct		
648.	what is the area drained by a single river system called?	A	
	A. Watershed		
	B. Basin C. Duringer havin		
	C. Drainage basin D. Drainage watershad		
640	D. Drainage Watersned	C	
049	A Drinking numbers	C	
	A. Difficing purpose B. Irrigation of agricultural lands		
	D. Inigation of agricultural failus C. Vertical drainage		
	D. Horizontal drainage		
650	Which of the following is TRUE for drains?	P	
0.00	when of the following is TRUE for trailing:	ы	

A.	These are used to convey water from rivers to the fields	
В.	These are used to take the drainage of an area to the rivers	
C.	These are mostly lined	
D.	Both B and C	